
1026 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 17, NO. 2, JUNE 2020

Dynamic On-Demand Fog Formation Offering
On-the-Fly IoT Service Deployment

Hani Sami and Azzam Mourad

Abstract—With the increasing number of IoT devices, fog
computing has emerged, providing processing resources at the
edge for the tremendous amount of sensed data and IoT compu-
tation. The advantage of the fog gets eliminated if it is not present
near IoT devices. Fogs nowadays are pre-configured in specific
locations with pre-defined services, which limit their diverse avail-
abilities and dynamic service update. In this paper, we address
the aforementioned problem by benefiting from the container-
ization and micro-service technologies to build our on-demand
fog framework with the help of the volunteering devices. Our
approach overcomes the current limitations by providing avail-
able fog devices with the ability to have services deployed on
the fly. Volunteering devices form a resource capacity for build-
ing the fog computing infrastructure. Moreover, our framework
leverages intelligent container placement scheme that produces
efficient volunteers’ selection and distribution of services. An
Evolutionary Memetic Algorithm (MA) is elaborated to solve our
multi-objective container placement optimization problem. Real
life and simulated experiments demonstrate various improve-
ments over existing approaches interpreted by the relevance
and efficiency of (1) forming volunteering fog devices near
users with maximum time availability and shortest distance, and
(2) deploying services on the fly on selected fogs with improved
QoS.

Index Terms—IoT, fog computing, on-demand fog formation,
edge computing, docker, Kubernetes, Kubeadm, container
placement, evolutionary memetic algorithm, micro-services.

I. INTRODUCTION

IN TODAY’S fast growth and high intelligence, we are
encountering a vast increase in the number of IoT devices

changing the way we live. This leads to a humongous volume
of data that has to be dealt with before going to the cloud
with the help of fog nodes located at the edge next to IoT
devices [1]. The purpose of having fog nodes located next to
users can be summarized as a computation resource for filter-
ing the data, processing power for the data before it goes to
the cloud, minimizing the workload on the cloud, achieving
faster response time, and diminish their energy consumption
by reducing data transmission over the network. Fog is a per-
fect solution for resource constrained devices and users in need

Manuscript received May 23, 2019; revised September 11, 2019 and
December 3, 2019; accepted December 6, 2019. Date of publication
January 1, 2020; date of current version June 10, 2020. This work was sup-
ported by the Lebanese American University. The associate editor coordinating
the review of this article and approving it for publication was J. Sa Silva.
(Corresponding author: Azzam Mourad.)

The authors are with the Department of Computer Science and
Mathematics, Lebanese American University, Beirut 10017, Lebanon (e-mail:
azzam.mourad@lau.edu.lb).

Digital Object Identifier 10.1109/TNSM.2019.2963643

of a service running nearby to get a better Quality of Service
(QoS). However, current work in the literature are considering
fog devices pre-configured in specific locations next to a group
of known users and running the same known services all the
time. This limits the fog advantages in terms of having them
available all the time next to the user in need and does not
allow the fog to change and update services in its hosting envi-
ronment on-demand. Accordingly, there is a need for having
an architecture that can help in creating fogs on-demand, and
can adapt or configure the installed services that should be
updated, removed, or changed dynamically.

In parallel, the rise of the containerization technology is
opening the door for interesting solutions serving the fog com-
puting objectives. Containers are services running on a device
by using their actual operating system to provide them with
services. This makes containers more lightweight and gives
them an advantage over virtual machines which use a full copy
of the operating system and are much heavier on devices [2].
It is easier now to just have an abstracted operating system
with all the environments needed to run multiple services
in multiple containers that are a copy of images pulled from
image repositories like Docker Hub. Docker and Kubernetes are
the main containerizations and orchestration technologies used
nowadays [3]. Moreover, the fast emergence of micro-service
architecture, where services are designed to be decoupled and
lightweight, makes them perfect candidates to be deployed
and executed on containers. In this paper, we benefit from the
containerization and micro-service technologies to address the
aforementioned problems of the existing statically formed fog
computing architectures and solutions in the literature.

In this context, we propose a dynamic on-demand fog
computing framework based on Kubeadm and Docker with
the presence of volunteering devices. Images embedding
lightweight micro-services can be deployed and run efficiently
on the fly even on devices with limited resources [4]. The
advantage of supporting on the fly deployment technique is to
push only current needed services which were not predicted
to be requested. Moreover, the motivation behind using vol-
unteering devices to join the fog network is to increase the
available resources capacity wherever possible, which leads
to maintained services availability everywhere. Our proposed
on-demand creation serves as a solution to overcome the
limitation of fog availability, usage of fogs on statically
defined locations, hosting pre-configured devices, and embed-
ding pre-selected services. A master-worker nodes architecture
is implemented with the help of a Kubernetes Utility called
Kubeadm [5], which uses docker to monitor the status of

1932-4537 c© 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on June 25,2021 at 03:51:42 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-6925-1006
https://orcid.org/0000-0001-9434-5322

SAMI AND MOURAD: DYNAMIC ON-DEMAND FOG FORMATION OFFERING ON-THE-FLY IoT SERVICE DEPLOYMENT 1027

containers running on every worker node through the master
node. Moreover, another problem arises to select the best
volunteers that can host the different required services. In
this regard, we formulate this problem as a multi-objective
container placement optimization problem and provide an
Evolutionary Memetic Algorithm to solve it [6]. Using heuris-
tics, our decision model efficiently dictates for each service on
which volunteer to be pushed.

To overview our approach and illustrate its contributions
and advantages, we take three real life scenarios that require
dynamic creation of a nearby fog: (1) An IoT device consum-
ing significant energy while sending lots of data all the way to
the cloud, (2) a user frequently requesting a particular service
from the cloud and requiring better QoS, and (3) a crime taking
place in an area where an image processing service need to be
pushed on volunteering fog(s) to process the image and iden-
tify faces in the scene. In this context, our framework based
on some criteria allows the cloud to decide on the need for
fog serving near this device. We have three possible actions
that the cloud can take. First, a Kubeadm cluster is already
created in the area where we need a serving fog. In this case,
the cloud forwards the pushing requests to master node of the
ready orchestrator and let it deploy the service on the avail-
able volunteer. Second and third, in case a kubeadm cluster
is not ready, two actions can take place based on the sta-
tus (e.g., battery level), the behavior (e.g., number or type of
requests) of the user sending the data, and the available volun-
teering resources in this area. The cloud can either decide to
directly join a fog to its cluster and push images of services to
it or to initialize an orchestrator first and then let it do the job
of joining a fog to its new cluster. If it is either an orchestra-
tor or a fog, the container placement algorithm running on the
orchestrator outputs the near optimal distribution of services
on a group of available volunteers based on the proximity and
available resources. Many conflicting objectives are taken into
consideration such as the number of services pushed to vol-
unteers, quality of service, distance from volunteers to users,
and time availability.

With the help of volunteering devices, containerization,
orchestration, and micro-service technologies, we are able in
this paper to overcome the aforementioned limitations and
achieve the following contributions:

1) Proposing a novel on-demand fog computing architec-
ture embedding dynamic creation and management of
volunteering devices and efficient on the fly deployment
of IoT services.

2) Providing generic and adaptable multi-objective
optimization model to formulate container place-
ment problem and adapt its evaluation to different
contexts such as the available resources, priority of
required services, proximity from IoT devices, and time
availability.

3) Offering efficient orchestration approach in a dynamic
fog environment.

The road-map for this paper is as follows. A discussion of
some important background information and related work
is presented in Section II. We illustrate our problem in
Section III. In Section IV, we propose our dynamic on-demand

fog computing architecture. We define and formulate the
multi-objective optimization model and prove its complex-
ity in Section V. In Section VI, we choose the evolutionary
memetic algorithm to solve our problem. Implementation and
experimental results are depicted in Section VII to evaluate
our approach and prove the efficiency of our container place-
ment model against competing architectures and placement
solutions. Finally, in Section VIII, we conclude our work and
open the door for future research directions.

II. BACKGROUND AND RELATED WORK

We present in this section some background information and
relevant state of the artwork done in the literature about the use
of volunteering resources as infrastructure and containerization
technology in the context of fog computing. We also provide
the related work we counted on to build our multi-objective
optimization model and other competing solutions.

A. Fog Computing Trends and Requirements

In the surveys [7] and [8], authors provide detailed descrip-
tions on existing architectures to serve the fog computing
paradigm and highlight on their main limitations. The chal-
lenges of managing heterogeneous fogs resources and defining
the proper strategy of deploying a fog environment in real
time are identified as the ongoing trends. Authors also dis-
cussed the importance of the fog presence near IoT devices to
support real time-sensitive applications such as the real-time
fire detection to dispatch fleets of robots to the proper destina-
tion at the proper time, and the virtual reality applications that
require fogs presence. Therefore, on the fly fog initialization is
required to support such applications. In this paper, we focus
on providing an architecture that supports fog management
and services deployment on available volunteering heteroge-
neous fog resources using micro-services, containerization,
and orchestration technologies. As stated in [7], micro-services
pushed using containerization technology is a promising solu-
tion to provide smooth deployment of cloud services near
the edge because of the agility and independent distribu-
tion of micro-services and lightweight nature of containers
installment.

B. Fog Containerization

Before containers, services were pushed to fog devices using
virtual machines; some approaches are still using them [9].
Containers are proven to be more lightweight than virtual
machines as they have many advantages [2]. Therefore, recent
literature work is shifting to the use of containerization tech-
nology for service deployment. The potential of using Docker
technology to run containers on fog devices with the ability to
adjust services hosted whenever needed is proven by authors
in [10]. A model was proposed by authors in [11] where
dynamic deployment of services on helper nodes of the main
server using Docker is possible. So it is feasible to remove,
add, stop, and run any service on a physically known fog
anytime. The main limitation of this paper is that the fogs
along with their locations are already known and may not be
near users. In this paper, we call such devices static fogs.

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on June 25,2021 at 03:51:42 UTC from IEEE Xplore. Restrictions apply.

1028 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 17, NO. 2, JUNE 2020

Furthermore, in their work, the user is requesting to push
services to fogs, and it is not on-demand decided by the server.

In the recent work done by [12], authors focused on the
ability to use lightweight Docker containerization technol-
ogy to support service provisioning over IoT devices. Their
main contribution is to show how lightweight containerization
technology can manage IoT resources by hosting services on
them.

The authors in [13] and [14] tried to build a framework that
can dynamically push services to fogs present in an area where
these devices are known for the orchestrator (static fogs).

C. Containers Placement Problem

López-Pires and Barán [15] proposed an interactive memetic
algorithm to solve the proposed multi-objective formulation
of the virtual machine placement problem. The goal is to find
an efficient distribution of VMs on corresponding available
hosts with respect to the conflicting objective functions. This
problem can be mapped to our container placement problem
by considering the VMs as containers, and the available hosts
to run the VMs as the volunteering fog devices.

The purpose in [16] is to provision fog resources and
provide the efficient distribution of services on fogs. They
mathematically formulated the problem and took into account
the number of pushed services and proximity from the user;
however, they did not consider the time availability of this fog
to serve. Our approach counts on volunteering devices, so this
objective affects the optimal decision. This is proven in our
experiments below. Moreover, they used genetic algorithm to
solve their problem; in our case, we are using the evolutionary
memetic algorithm to get a good solution at early stages and to
minimize the chances of halting in a local optimal compared to
the genetic algorithms. This is achieved using the probabilistic
bit string mutation that maximizes the number of explored pos-
sible solutions. We also use a probabilistic local search that is
proved to find feasible solutions at early stages by improving
the current solutions in the population and provide a balance
exploitation of the different objective functions [15].

D. Volunteering Fog as Infrastructure

Following the history of the growth of cloud comput-
ing, several approaches tried to augment the constrained
devices’ performance by offloading their heavy work to remote
server or to the cloud [17], [18]. The main limitations of
such approach are the network congestion and delays caused
by long communications with the cloud. After modernizing
the computation power of mobile devices, it becomes more
efficient to rely on these devices to host services, perform com-
putation, or even building a secure mobile environment [19]. In
the same context, the work of authors in [20], [21] showed the
ability and benefit of bringing new volunteering fog devices
to help the main one in case they are next to each other, as
well as the ability of distributing the load of requests on many
fog volunteers. A model for dynamic resources allocation was
proposed by [21] to assign requests to fogs based on their
advertised resources in real time. Although the fogs are accept-
ing requests related to some particular services in this paper,

Fig. 1. Response Time of Requests Sent From User to the Cloud Compared
to the Fog on Different Types of Devices.

they didn’t discuss how these services are running on these
devices. An elaboration on the ability to use vehicular nodes
as infrastructure to build the fog environment was proven by
authors in [22]. They proved the ability to use moving and
parked vehicles as infrastructure to support moving users using
Vehicular Fog Computing.

E. Analysis

Based on the above discussed limitations, there is a need
for fog presence on-the fly and on-demand. To the best of our
knowledge, none of the literature work has proposed a solu-
tion serving the fog computing paradigm to create fogs on the
fly on any type of devices. In addition, no one proposed a
solution for the container placement problem. Our proposed
approach uses Memetic to generate distributions of containers
on selected fog volunteers using heuristics based on specific
attributes in a way that suits the user’s needs, minimizes
the communication overhead and resources consumption, and
maximizes the number of pushed services efficiently.

III. PROBLEM ILLUSTRATION

Fog devices are not available everywhere, and some IoT
users are not covered by them. Whenever a fog is not avail-
able to serve a user in need, the requests of this user have to go
to the cloud. This causes a delay in network communication.
Consequently, the user is not experiencing the needed quality
of service, and some others are wasting energy waiting for
their requests to be served. To shed light on the importance of
the presence of fog devices when needed, we considered the
traditional fog case where a user is requesting a service from it
against requesting it from the cloud. For this purpose, different
types of devices were used to run the same service as the cloud
and placed two hops away from the user. The used service
replies to users with an HTML page using the Flask frame-
work [23]. The recorded response time of sending a group of
requests simultaneously to the cloud and various devices is
illustrated in Fig. 1. As shown in the graph, even constrained
devices have better performance than the cloud. This can be
interpreted by the networking delays for the requests to reach
the cloud and go back to the corresponding user. The response
time of sending 1000 requests simultaneously to the cloud is
214 seconds, while it takes the Raspberry Pi2 (Pi2) device 7

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on June 25,2021 at 03:51:42 UTC from IEEE Xplore. Restrictions apply.

SAMI AND MOURAD: DYNAMIC ON-DEMAND FOG FORMATION OFFERING ON-THE-FLY IoT SERVICE DEPLOYMENT 1029

Fig. 2. Proposed Framework - High-Level Architecture.

seconds to reply to all the requests. This experiment explores
the importance of fog presence nearby and also illustrates the
losses in response time and network delay in case of their
absence. In this context, our proposed approach constitutes a
solution for forming on-demand fog with on the fly service
deployment for serving the need of nearby IoT devices.

IV. PROPOSED ARCHITECTURE

The presence of fog devices enables services to reside at the
edge next to IoT devices. This implies less transmission power
from sensors, therefore less power consumption on the IoT
device. Moreover, the vast amount of data generated by IoT
devices requires data processing with high capacity and low
delay. This requires powerful processing to serve requesting
users. Therefore, we design our proposed framework with the
purpose of supporting IoT devices when needed anytime by
deploying/managing container-enabled services after forming
ready fog clusters near them on the fly.

A high level overview of the architecture can be found in
our previous work [24]. In this section, we discuss the archi-
tecture of our proposed framework, illustrated in Fig. 2. The
on-demand fog Kubeadm cluster is built using the volunteer-
ing resources and cloud only. The Kubeadm utility is used
because it supports Docker and allows us to create custom
Kubernetes clusters using any constrained devices. The archi-
tecture is composed of four layers: cloud, orchestration, fogs,
and IoT/users.

The cloud is responsible for taking a decision on-demand
where we need serving fog(s) for a particular service based
on users’ behaviors and recurrent requests coming from a par-
ticular location. It is also responsible for adding orchestrators
or fogs in the areas where we have a lack of serving nodes.
We have three scenarios that can take place to let the cloud
perform different actions accordingly:

1) In case a Kubeadm cluster using volunteering devices
is already built in the target area, then the initializa-
tion time of a master node and joining time of the
volunteering node is saved. This way, the orchestrator
of the cluster can directly deploy services to available
volunteers.

TABLE I
NODE ARCHITECTURE PER LAYER

2) In case there were no volunteering devices available to
prepare the Kubeadm cluster, then we have two possible
scenarios.

a) If there are no available resources to initialize a
new orchestrator near users, the cloud let its vol-
unteering devices join its cluster to serve as fog
nodes.

b) If enough resources are available in the target loca-
tion, the cloud asks a suitable volunteer to initialize
a Kubeadm cluster (to become a master node),
which will ask the volunteers to join as fogs.

The orchestrator or the master node of a Kubeadm cluster
runs the services for deciding on adding and removing specific
fogs in its cluster as well as deploying, updating, or removing
services from them. For example, services that are not in use
for a certain period should be removed by the orchestrator.

Fog is the worker nodes of a Kubeadm cluster that is either
created by the cloud master or another on-demand initialized
orchestrator near it. This fog is a volunteering device which
asked to join by sending requests to the cloud. In this context,
the cloud or orchestrator(s) chooses from the available list of
volunteers the best set of devices to host a specific service
on these fogs while taking into consideration their profiles
and based on the decision of the optimization model. Until
a fog is available to serve a user, the requests continue their
flow normally to the cloud until the newly created fog’s IP is
published to the users.

An IoT device or a user sends requests normally to the
cloud if there is no fog in the area, and receives a fog IP
address once any is available next to it. This way, the user
is experiencing a better quality of service (QoS) by having
a faster response time, less communication overhead, and a
full device dedicated to serving one or a group of users/IoT
devices.

A description at each level of the components embedded
in each node of the architecture is presented in Table I. All
nodes have to run the Kubeadm containerization required mod-
ules. A decision module for selecting volunteering nodes as
orchestrators or fogs has to run on the cloud and the orches-
trator. Finally, the profiler components should be running on
the orchestrator and fog volunteers.

In the sequel, we present a description of the modules run-
ning on each layer of the architecture. Each of these modules
is implemented as python scripts using the Flask Web services

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on June 25,2021 at 03:51:42 UTC from IEEE Xplore. Restrictions apply.

1030 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 17, NO. 2, JUNE 2020

framework and pushed to the Docker Hub repository after
building their Docker files. These images are used later by
any device joining a cluster.

A. Kubeadm Required Modules

Kubeadm helps in building a best practice of the Kubernetes
cluster in a very secure, easy, and extensible way [5]. When
using Kubeadm, the device can range from a raspberry pi to
a server. Docker should always be running on all devices.
Kubelet component starts running on each end. It is respon-
sible for keeping the communication alive with the master. It
also checks the health of services running and the status of the
device as well. Kubectl is the command line tool which should
be installed to control Kubeadm cluster. A Container Network
Interface solution (CNI) should be installed in the cluster and
on each device to let the pods communicate with each other.
An example of a CNI network is Flannel [25]. Kubeadm will
not run if any of these dependencies are missing. The master
and worker nodes should have the Kubeadm containerization
required modules installed. When the master is initialized, it
will have a unique hashed token to be sent to devices to join
the cluster as worker nodes. When the worker node is ready,
different images are pulled and run inside its pods once joined.

B. Kubeadm Environment Initializer

The cloud starts initializing the first orchestrator in a loca-
tion when it receives a certain number of requests above a
certain threshold from this location. For this paper, we are
assuming that there is always a list of available suitable vol-
unteers to use. The following are the provided functionalities:

1-Taking decisions for selecting the most suited volunteering
orchestrators: The Decision module for selecting volunteering
nodes as orchestrator discussed in Section V is triggered. It
takes as input the profiles of available volunteers in a particular
location. Its output is the most suitable volunteer to be assigned
as a new orchestrator.

2-Joining volunteers to orchestrator: Whenever the volun-
teering orchestrator of a location is ready, the cloud prompts
all remaining volunteering devices in this location to join
the running Kubeadm cluster monitored by the newly created
orchestrator. Therefore, the Kubeadm environment is ready
to handle pushing services without any initialization delays
needed directly.

3-Guaranteeing highly available cluster: This module
checks the time remaining and the availability of all the
orchestrators running. It also informs the orchestrator selection
algorithm about the need of having a new orchestrator before
the old one terminates. If resources are available, always
another master node should be created next to the initial one to
achieve a highly available cluster (HA: highly available, this
feature is supported by Kubeadm where both master nodes
join the same network [5]). Also, if the initial orchestrator
goes down, the secondary one will be replacing it. This way,
the framework avoids delays in creating a new master node.
The initial master node always asks for a secondary one from
the cloud. A limitation in Kubeadm is that whenever the master
node goes down, the whole cluster gets down as well [5].

C. Orchestrators Manager

In the following, we describe the functionalities offered by
the orchestrator manager which is a case of an orchestrator of
orchestrators running on the cloud:

1-Collecting Users Requests: Users requests are collected
from the server logs and can be used for further analysis. These
logs represent historical data of users behavior of a particular
location.

2-Taking decision of Orchestrator/Fog Creation: Based on
users behavior, number of requests coming, and the level of
urgency of services needed near them (e.g., a user can send
urgent request when they are losing a lot of energy, or they
need a better QoS), the cloud decides if either an orchestra-
tor should be created to initiate the fog node through, or it
is a time-sensitive situation where a fog should be created
directly. Unless a Kubeadm cluster is available in the target
location, we cannot ignore the initialization time of a cluster
needed in real life simulations. In addition, if a decision is
taken to push services to a device, it assigns priority levels
to each image/service to be pushed before others. Priorities
are assigned because available resources to host containers of
services might not be enough to host all of them. On the other
hand, the cloud might also decide that there is no need to ini-
tialize a device and host any services on it at this moment.
It is a complex decision to be made, and it might require a
machine learning model that can classify the user behavior
and requests coming into three categories as follows: no need
for a fog, an orchestrator should be created, or a fog should
be created, and a priority level for each service if needed.
However, the implementation of this unit is out of the scope
of this paper. For now, we are assuming in our experiments
that the decision of creating an orchestrator or a fog is already
done by the decision module. Moreover, our core approach is
to let the cloud just decide on a fog needed where the cloud is
its orchestrator; however, we extended the capabilities of this
module with an approach for having the orchestrator initial-
ized near fog devices and not always running on the cloud.
The advantages of this extension are:

• Reducing the delay in choosing and creating new fog
devices to join the cluster in a highly dynamic environ-
ment of fogs coming in and out. In other words, the delay
of the communications between the cloud and fogs near
edge devices is eliminated.

• Distributing the load coming to the cloud on orches-
trators, especially when fogs joining the cluster have
short time availability, which renders the situation very
dynamic.

• Avoiding to have a single point of failure where the cloud
is the only orchestrator for a huge number of fog devices.

3-Joining and Pushing Services to Volunteering
Orchestrators: If the cloud decides that a fog needed in
an area where an orchestrator exists, it sends this orchestrator
the list of needed services to be pushed. If a volunteer is
ready, it pushes the required and needed services to it. If
the orchestrator is not available and the user can tolerate
some delay, the cloud calls the decision module for selecting
orchestrators to initialize the best suited one, and then push

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on June 25,2021 at 03:51:42 UTC from IEEE Xplore. Restrictions apply.

SAMI AND MOURAD: DYNAMIC ON-DEMAND FOG FORMATION OFFERING ON-THE-FLY IoT SERVICE DEPLOYMENT 1031

the services required by our framework to be running on the
master node. If it is a time-sensitive situation, the cloud calls
the decision module to select volunteering fog(s) for joining
(Container Placement). When the fog is ready, images will
be downloaded on it.

D. Fog Manager

In this section, we discuss the functionalities of the fog
manager, a case where we have an orchestrator of fogs. The
orchestrator can be on the cloud or on volunteering devices
near fogs. When the service needed is urgent, the cloud
directly pushes join commands to the volunteering device(s)
to join its cluster as a volunteer. The volunteer is considered as
a fog device when it hosts at least one service. By letting the
volunteer directly join the cloud cluster as fog, we are saving
the delay of creating a new Kubeadm cluster. The following
are the provided functionalities:

1-Getting List of Volunteers and Services: The fog man-
ager accepts requests coming from the cloud containing a list
of services to be pushed and another one of available volun-
teers. When the cloud is the orchestrator of fogs, it reads the
volunteers records available from its database.

2-Joining and Pushing Services to Fogs: The fog manager
assigns services to fogs if already running and suitable for the
new services. If there is no fog available, it adds new ones to
the cluster.

3-Calling Decision Module to Select Volunteers: The
orchestrator triggers the decision module for selecting volun-
teering fog nodes and assigning the proper services to them
based on the available capacities of volunteers, proximity
from users, and time availability with respect to the requested
resources by the services and their priorities (Section V).

4-Balancing Load: This component monitors the number of
requests served by each fog and decides on a Load Balancer
if needed, which means we need more containers to serve this
service. In this case, the load of one fog is distributed on others
in peak time only, or new containers are created on the same
fog if possible. This feature is provided by Kubernetes [5].

5-Backing-Up Fogs: Similar to how Back-Ups of orchestra-
tors are created, this module checks the remaining time of a
fog inside the cluster and tries to instantiate a new one before
the old one leaves the cluster.

6-Monitoring Volunteer Status and Services: This is done
by checking the profile and services running on each fog. If
any service is not being requested by users, it will be removed.
By default, Kubelet automatically restarts any service that fails
and report the failure to the orchestrator [5]. If the failure
occurs more than a provided threshold, the orchestrator in our
framework initializes another one with the required services
running before excluding it from the cluster.

7-Publishing New Fogs IPs: The orchestrator informs users
of the new fog’s IP address by getting their list from the cloud.

E. Container Placement - Decision Module for Selecting
Volunteer Nodes as Orchestrator or Fog and Service
Placement

This module is triggered by the orchestrator or fog manager
where an orchestrator or a fog is setup based on its decision.

The efficient selection among nodes is based on several criteria
and profiling measures, which is considered a multi-objective
optimization problem. A full description of the problem and
an implementation of the algorithm to solve it are provided in
Section V (formulated as container placement problem). If an
orchestrator should be selected and initialized to cover a par-
ticular area, this algorithm will have the responsibility to send
the master’s initialization commands to the selected orches-
trator. If a fog is to be chosen, a kubeadm joining command
will be sent to the volunteer to join the cloud’s cluster, and
suitable services will be pushed to selected volunteers based
on the decision of the optimization model.

F. Volunteers Management

The cloud accepts volunteering requests from users and
stores them in a database. The data contains the profile of
the user and most importantly, its location. This database is
accessed by the elaborated volunteer management algorithm
whenever the cloud wants to choose an orchestrator or fog.

G. Profiler

This module allows the master node of a cluster to request
all the necessary information about the device including the
computation power, number of CPUs, current CPU usage, size
of the memory, memory usage, size of the disk, disk usage,
battery level if available, name of the device, and more impor-
tantly its location and time availability. The profile is updated
frequently and requested when needed from the cloud or the
orchestrator.

H. Fog Client

In this section, we discuss the fog client functionalities
running on the volunteering fogs or any potential volunteer.

1- Sending Requests to Join a Cluster: When a volunteering
device wants to advertise its resources to join as orchestrator or
cloud, the fog client sends join requests containing its profile
to the cloud to keep a record of it.

2- Keeping Cloud Updated: The volunteer device replies to
the cloud by sending its updated version of the profile once
requested based on timestamps.

V. CONTAINER PLACEMENT PROBLEM

This section is divided into two parts. In the first one, we
define our multi-objective optimization problem and prove its
complexity. In the second part, we mathematically formulate
our problem by providing the input and output data, the con-
straints that should be applied when building a solution, and
finally, the objective functions.

A. Problem Definition

Given two sets of services as Docker containers
S = {s1, s2, . . . , sn} to be pushed to a certain location, and
available volunteering devices D = {d1,d2,d3, . . . ,dm} in
the same location, we have to find the best distribution of
these services on such devices while taking into consideration
their different demands in terms of the resources consumption
and priority factor for each service, whereas the devices are

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on June 25,2021 at 03:51:42 UTC from IEEE Xplore. Restrictions apply.

1032 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 17, NO. 2, JUNE 2020

providing their available resources in terms of capacity, time
availability, and location with respect to the requesting group
of users. Selecting the best set of devices and optimally find-
ing distribution of services on them is complex and considered
as NP-hard problem.

Theorem 1: Multi-objective Optimization Problem is
NP-Hard.

The well known Bin-Packing problem is NP-Hard [26].
Therefore, by reducing our problem to the Bin-Packing
problem, we can prove that our problem is NP-Hard. The tra-
ditional bin packing problem is described as follows. Suppose
we have a set of objects with different volumes that you need
to pack inside a finite number of bins of some capacity or
volume. The aim is to try to maximize the total object packed
in the bin, and to minimize the number of used bins. Our
problem can be mapped to the Bin-Packing problem as fol-
lows. Each bin is our available volunteering device that has
some resources capacities, and the objects are the service
images we need to assign for these hosts. Our objective is
to maximize the number of pushed service while minimiz-
ing the number of active hosts, in addition to other objective
functions. Thus our problem is NP-hard.

B. Problem Formulation

We aim to optimize the number of pushed services to
devices, the number of active devices to host all of these
services, the QoS, the survivability factor, and the distance
range from the hosting device to the requesting node.

1) Input Data: The proposed formulation of the container
placement problem models a set of services S to be pushed
to a particular location from the cloud to a set of available
hosts H in this location.

The set of services is represented as a matrix S ∈ R
n∗4

corresponding to four input features. Each service S requires
processing resources of CPU, memory, disk space, and pro-
vides a priority level as follows:

Si =
[
Scpui ,Smi ,Sdi

,Spi

]
, ∀i ∈ 1, . . . ,n,

where:

Scpui : Processing requirements of Si

Smi : Memory requirements of Si

Sdi
: Disk requirements of Si

Spi : Priority level of Si with respect to other services
n : Number of services to be pushed .

The set of available hosts are represented as a matrix H ∈
R

n∗5 corresponding to 5 input features. Each host is offer-
ing the available resources in terms of CPU, memory and
disk space, in addition to the time availability (Survivability
Factor), and its current location with respect to the group
of users. The volunteering host can be mathemicatically
represented as:

Hj =
[
Hcpuj ,Hmj ,Hdj

,Hsuj ,Hlj

]
, ∀j ∈ 1, . . . ,m,

where:

Hcpuj : CPU availability on host Hj .

Hmj : Memory availability on host Hj .

Hdj
: Disk space availability on host Hj .

Hsuj : Time where Hj is available to host services .

Hlj : Location of Hj with respect to targeted group of
users.

m : Number of available hosts.

2) Output Data: A calculated solution K should indicate a
complete placement of each Service Si into Hj , considering
the applied multi-objective optimization criteria. A placement
is represented as a matrix K = Kij of dimensions (n ∗ m)
where Kij ∈ 0, 1 indicates if Si is located or not to be pushed
on host Hj . In addition, arrays L and R are derived from the
output matrix K. L represents the set of active hosts that at
least host one service by setting Lj to 1, otherwise it is 0. On
the other hand, R represents the set of services that are pushed
by setting Ri to 1 and to 0 otherwise. L and R are described
as follows:

Lj =

(
n∑

i=1

Kij > 0

)

? 1 : 0

Ri =

⎛

⎝
m∑

j=1

Kij > 0

⎞

⎠ ? 1 : 0. (1)

3) Constraints (Physical Resources Capacity of Hj): A ser-
vice Si can be hosted on Hj if the host capacity will not reach
its maximum after allocating the service to it. The capacity is
formulated as the CPU, Memory, and Disk space available
to be used by our framework on the host, and the service
requirement as the CPU, Memory, and Disk space usages.
This constraint can be expressed in mathematical format as
follows:

n∑

i=1

Scpui × Kij ≤ Hcpuj (2)

n∑

i=1

Smi × Kij ≤ Hmj (3)

n∑

i=1

Sdi
× Kij ≤ Hdj

(4)

∀j ∈ 1, . . . ,m , i.e., for all available hosts Hj
Minimum Survivability Time: To avoid a very high dynamic

environments of hosts joining and dropping from the cluster,
we specify a minimum time availability offered by any device
to be able to join the cluster as follows:

∀j ∈ 1, . . . ,m Hsuj ≥ D where D ∈ N. (5)

Unique Placement of Si : In the same targeted location, a
service Si should not be pushed more than once to an available
host Hj unless it is a special where a load balancer is needed.
The above is expressed as follows:

m∑

j=1

Kij ≤ 1, ∀i ∈ 1, . . . ,n (6)

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on June 25,2021 at 03:51:42 UTC from IEEE Xplore. Restrictions apply.

SAMI AND MOURAD: DYNAMIC ON-DEMAND FOG FORMATION OFFERING ON-THE-FLY IoT SERVICE DEPLOYMENT 1033

Applying Priorities to Services: Each service has priority
level from 1 to t. t is the highest level of priority, which
means that this service should be pushed first. If the total avail-
able resources capacity in a location is not enough to host all
services, the following equation should be applied:

m∑

j=1

Kij = 1, ∀i such that Spi = t . (7)

Weights Summation: We proposed the weight multiplication
with each objective function in order to provide more flexi-
bility in prioritizing an objective function over others. This
weight is a decimal value between 0 and 1 where the sum of
all weights is equal to 1. This approach is also known as the
method of adjustable weights [27].

For example, given W1 = 0.3 and W2 = 0.1, the W1 value
will affect the maximization results of the sum of objective
functions, therefore, f1 value will have more effect on the
overall optimization decision. It is expressed as follows:

Wf 1 + Wf 2 + Wf 3 + Wf 4 + Wf 5 = 1. (8)

4) Objective Functions (Number of Pushed Services
Maximization): The aim is to Maximize the number of pushed
services to devices in the chosen population.

F1 = max

⎛

⎝

⎛

⎝
n∑

i=1

m∑

j=1

Kij

⎞

⎠× Wf 1

⎞

⎠ (9)

where Wf 1 is the weight of the objective function maximizing
the pushed services. By maximizing the number of pushed
services, we guarantee that all users’ requests for services are
satisfied and deployed next to them.

QoS Maximization: The quality of service is improved by
ensuring that the maximum number of services with high
priorities are pushed. This objective is proposed in [28] as
follows:

F2 = max

((
n∑

i=1

CPi × Pi × Ri

)

× Wf 2

)

(10)

where:
CPi : is a large constant that prioritize services with high

Pi over others with low value of P. P is a score indicating the
priority level of a service.

Wf 2: is the weight of the objective function
maximizing QoS.

Survivability Factor Maximization: Maximizing the time a
device is available to host particular services is expressed as:

F3 = max

⎛

⎝

⎛

⎝
m∑

j=1

Hsuj × Lj

⎞

⎠× Wf 3

⎞

⎠ (11)

where Wf 3 is the weight of the objective function maximizing
survivability factor. By maximizing the time a device is avail-
able to host a service, we are neglecting the time of initializing
a new hosting device to get ready for serving users.

Host Distance Minimization: Minimizing distance to the
user requesting the service is expressed as:

F4 = min

⎛

⎝

⎛

⎝
m∑

j=1

Hlj × Lj

⎞

⎠× Wf4

⎞

⎠ (12)

where Wf4 is the weight of the objective function minimizing
the host distance. By minimizing the distance, we guarantee
the minimum networking delay, which means getting faster
response time, in addition of minimizing the energy losses on
the user side.

Active Hosts Minimization: The aim of this objective func-
tion is to minimize the number of active hosts to save
initialization time of devices when joining the cluster, using
less energy with less hosts running, and a better way for the
orchestrator to monitor less devices. It is expressed as:

F5 = min

⎛

⎝

⎛

⎝
m∑

j=1

Lj

⎞

⎠× Wf5

⎞

⎠ (13)

where Wf5 is the weight of the objective function minimizing
active hosts.

After having the optimization functions declared, the multi-
objective optimization problem becomes:

y = f (x) = [f1(x), f2(x), f3(x), f4(x), f5(x)] (14)

where:

f1(x) = number of pushed services;
f2(x) = QoS;
f3(x) = survivability factor;
f4(x) = host distance;
f5(x) = number of active hosts; (15)

subject to:

e1(x) : processing resource capacity of Hs ;
e2(x) : memory resource capacity of Hs ;
e3(x) : minimum survivability;
e4(x) : unique placement of S ;
e5(x) : services with high priority first;
e6(x) : sum of all objective function weights = 1; (16)

VI. MEMETIC ALGORITHM FOR CONTAINER

PLACEMENT PROBLEM

It is important to get the pareto set of solutions for the
container placement problem in a short period. The memetic
algorithm which is built on top of the genetic algorithm is a
suitable solution for such problems. It is not only characterized
by an evolutionary optimization strategy, but also by a local
optimization (local search) algorithm that can guarantee near
optimal solutions in early generations [6]. The memetic algo-
rithm proposed in [15] and adapted to solve our optimization
problem is illustrated in Algorithm 1. Every chromosome in
our proposed MA solution is represented by an i×j matrix. In
each chromosome K, allele Kij denotes a decision for service i
placement on host j, where Kij ∈ [0, 1].

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on June 25,2021 at 03:51:42 UTC from IEEE Xplore. Restrictions apply.

1034 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 17, NO. 2, JUNE 2020

Algorithm 1 Multi-Objective Memetic Algorithm
Data: Set of containers
Result: Pareto set approximation Pknown

1: Check if the problem has a solution
2: Initialize set of solutions P0
3: P ′

0 = repair infeasible solutions of P0
4: P ′′

0 = apply local search to solutions of P ′
0

5: Update set of non-dominated solutions Pknown from P ′
0

6: t = 0
7: Pt = P ′′

0
8: While (stopping criterion is not met), do
9: Qt = selection of solutions from Pt ∪ pknown

10: Qt ’ = crossover and mutation of solutions of Qt
11: Qt ” = repair infeasible solutions of Qt ’
12: Qt ”’ = apply local search to solutions of Qt ”
13: increment t
14: Update set of non-dominated solutions Pknown

from Qt ”’
15: Pt = fitness selection from Pt ∪ Qt ”’
16: End while
17: Return Pareto set approximation pknown

First, we check that the problem has at least a feasible
solution where containers of services can be hosted on avail-
able volunteers before moving to step 2. Next, we initialize
a random set of solutions P0 by randomly assigning images
of services to available volunteers. In step 3, we look at the
set of available solutions in P0, and repair any violation of
our constraints (e.g., services to be hosted on a device with
resource consumption greater than available capacity of the
volunteer). This violation are repaired in three ways and illus-
trated in Algorithm 2: (1) Moving containers to other available
volunteering devices, (2) adding unused volunteers to the list
of running one and move Docker containers to them, and
(3) removing the container from the list of services to be
pushed. Step 4 of the Memetic Algorithm (MA) is to apply a
probabilistic local search method presented in Algorithm 3 to
optimize feasible solutions. If the probability is less than 0.5,
we maximize the number of pushed services in their order
of priority following line 4. This will lead to maximizing
f1(x), f2(x) and f3(x). On the other hand, if we have prob-
ability >0.5, we minimize the number of available volunteers
which minimizes f4(x) and f5(x) (less number of hosts will
lead minimization in the total distance). Then the Pareto set
approximation is generated at step 5. After the initialization
of step 6, normal selection, crossover, and mutation opera-
tors are applied, infeasible solutions are repaired, optimization
of solutions is done using probabilistic local search, iteration
counter is incremented, and finally, the Pareto set is updated
if any improvements happened. After that, a new popula-
tion is selected. This process keeps on repeating until the
algorithm reaches several iterations. Finally, the fittest set
of the solution pknown is returned. In this MA, we use the
binary tournament for selecting individuals from the popula-
tion to apply crossover and mutation on them. The crossover
operator used is the single point cross-cut, where selected
individuals belonging to the ascending population are replaced
with descending ones. This crossover approach is discussed
in [29]. In this work, we make use of the bit string mutation.
In this operator, every gene is mutated with probability 1/n

Algorithm 2 Infeasible Solution Reparation
Data: Infeasible Solution
Result: Feasible Solution

1: feasible = false ; i = 1
2: While i ≤ n and feasible = false do
3: if it is possible then
4: move Si to H ′

j (j �= j ′)
5: else
6: if Sj does not have priority level
7: Remove Si from list of services to be pushed
8: else
9: Moving Si to other available volunteers Hj

in Pknown
10: end
11: end
12: end while
13: return Feasible Solution

Algorithm 3 Probabilistic Local Search
Data: Set of Feasible Solutions Pt ’
Result: Set of Feasible optimized Solutions Pt ”

1: Probability: Random value between zero and one
2: While there are solutions not verified do
3: if Probability < 0.5 then
4: We remove containers placed on Hj and run them

on Hj ’ if resources available are enough, and then
assign any unselected service on Hj if resources
are available after sorting them with priority level

5: else
6: We assign all services Si needed to available Hj
7: devices depending on resources requirement, and
8: then we discard all Hj and assign all services Si
9: to new set of volunteers Hj ’ that can host them

10: end
11: end while
12: return Set of Optimized Solutions Pt ”

where n is the number of services. This approach guarantees a
uniform opportunity of mutation over individuals with a small
probability, maximize diversity, improves the search space, and
prevents the stagnancy in a local optimum.

The complexity of this algorithm is divided into four
parts as discussed in [30]. Let M and N be the number of
chromosomes and number of nodes respectively. The gener-
ation of M chromosomes, the crossover, the mutation, and
the local search complexity time. The MA starts off using
O(M × (n − 1)×log(n − 1)) time units to generate the ran-
dom population. Also let pm and pc be the probability
of the mutation and crossover respectively. The number of
offsprings generated by the crossover uses O(N × pc ×
[M × (N + 1)]), while the ones created by the mutation
consumes O(pm × [M × (N + 1)]) of time units. The local
search algorithm consumes O(n). Therefore the combined
time complexity of the MA is:

O((M × (n − 1) × log(n − 1)) + (N × pc × [M × (N + 1)])

+ (pm × [M × (N + 1)] + N)).

VII. EXPERIMENTS AND SIMULATION RESULTS

To demonstrate the relevance and efficiency of our approach,
we performed Three main experiments and simulations covering
different aspects and real-life scenarios. The first experiment

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on June 25,2021 at 03:51:42 UTC from IEEE Xplore. Restrictions apply.

SAMI AND MOURAD: DYNAMIC ON-DEMAND FOG FORMATION OFFERING ON-THE-FLY IoT SERVICE DEPLOYMENT 1035

aims to show the importance of our proposed on-demand fog
formation approach where services are hosted on the fly in
an already created Kubeadm cluster next to requesting users.
We compared our results to existing architectures, including
hosting the service on the cloud, using VMs to push the service
(like most of the current approaches in the literature), using
static fogs, and placing the fog far from the user.

In some real-life scenarios, resources may not be available
to meet the assumed requirements of the first experiment. In
this regard, we provide the second experiment tailored to show
how our framework behave in such cases. Although these cases
rarely occur, it is worth studying their effect. In the aforemen-
tioned two experiments, we are assuming optimal selection of
volunteering fogs and distribution of services on them, which
is not the case in real life environment. Some volunteering
devices may have shortage on resources. Selecting them as
orchestrators and/or fogs may affect negatively the service
behavior and consequently our approach. In this regard, we
prove through simulation in the third experiment, that the
solution of the container placement optimization problem gen-
erates efficient results in favor of our proposed framework
while comparing it to existing work. We also prove that our
approach is able to scale and converge to a near optimal
solution when the input is large.

In the context of the first two experiments, we built a suitable
environment composed of many nodes and a typical network
topology where a user can access services running on machines
present in a lab linked using Ethernet and others on a cloud
server. We set up the environment on a Linux EC2 T2.small
instance running on Amazon Web Services cloud (AWS). We
used in the lab an HP Core i7 laptop running Windows7 with
8GB of RAM, an iMac corei5 with 8 RAM, and a Pi2 to
demonstrate the usage of mobile resource constrained device.
The user requesting the service is two hops away from the
lab. We installed Kubeadm containerization required tools on
all devices. The service used for testing in this environment is
composed of a simple image representing a micro-service. The
container of the image receives requests from users and replies
back with an HTML file. The purpose of choosing this service
is to check the networking delay to receive responses from
the hosting fog rather than counting on the computation power
of them for now. The service is implemented in Python using
Flask framework [23] along with its Docker file that is pushed
to the Docker Hub repository for further usage. For the last
experiment, Containernet simulator is used. Containernet is a
fork of the known Mininet simulator. Containernet provides the
flexibility of creating a whole network on a single machine.
This simulator lets us create hosts that support the use of
Docker images. We shifted from the real-life experiments to
the simulated Containernet because we can easily adjust the
distance between hosts by adding link delay between them.
The time availability can also be implemented by breaking the
link from a user to a fog while the simulation is running.

A. Experiment 1 - On-The-Fly Service Deployment on
Volunteering Fog Compared to Existing Approaches

In this experiment, we prove the efficiency and feasibil-
ity of our on-demand fog scheme when having the Kubeadm

Fig. 3. Response Time of Simultaneous Requests Sent to On-Demand Fog
Running On Pi2 Against Existing Approaches.

orchestrator and cluster of volunteers ready beforehand. This
case is mostly faced in real life environment. The time of
deploying the image (service) on the fly on a volunteering
fog is considered. The improvement achieved by our approach
is compared to existing work including the use of static
fogs [11], [13], [14], use of VMs to host services on fogs [9],
and possibility of initializing the fog far from the user. This
latter case is possible when resources are available on static
fogs placed far from the user. All of these approaches are also
compared to the standard use of the cloud to serve IoT devices.

1) Experiment Setup: The cluster and the fog were
previously initialized using the Kubeadm commands, and the
Pi2 is the target fog on which the service needed by the user
should be deployed. The request is sent to the orchestrator to
push the service for use. We downloaded a minimal Ubuntu
VM image and compared its download time to Ubuntu Docker
image. The Internet speed was set to a limit of 50mbps. To
simulate a fog that is far from the user, we added networking
delay of 80ms on a certain port of the machine.

2) Experimental Results: Fig. 3 shows the difference
between the response time of a different number of requests
sent to the cloud against the ones sent to the on-demand
nearby, static, and far fogs, including the time of pushing the
service from the concerned repository either as VM or a con-
tainer. The results are promising where major time saving is
achieved in the case of on-demand deployment on volunteering
fogs near the user with respect to accessing the service in the
other scenarios. The result of each scenario can be compared
to our on demand volunteering approach as follows.

• Static fogs can be placed far from the user, causing a
networking delay between the user and serving fog. As
shown in Fig. 3, the response time when requesting from
the static fog is double the response time of our approach.
For example, at 1000 requests, the response time in case
of the static fog is 34s compared to 16.81s when placing
the fog on a volunteer near the user.

• In case of using VMs to download the service on the
machine, it takes around 80s to download the VM at a
speed of 50m/s compared to 5s in case of downloading
the same service in a form of a container having a size
of 28MB. After 500 requests, the VM is ready and starts
serving with low response time. In case the service needs
to be updated or a new service is requested, the user has

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on June 25,2021 at 03:51:42 UTC from IEEE Xplore. Restrictions apply.

1036 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 17, NO. 2, JUNE 2020

to wait for the VM to be downloaded again. This time
may change since it depends on the Internet speed and
the size of the image being downloaded.

• Static resources on fogs can become overloaded, therefore
any request of a new service at this stage will be served
by the cloud. As shown in Fig. 3, the overloaded static
fog and the cloud behave the same way and take 220.65s
to serve the 1000 requests. Here comes the advantage of
using volunteering fogs to push services using containers
next to users. In our case, 97% time saving is achieved
compared to the overloaded fogs and cloud use.

B. Experiment 2 - Service Deployment Including Fog
Initialization

In this experiment, we study the possible scenarios that
might occur in case of lack of resources to host the fog
services. The possible scenarios are:

1) The orchestrator is ready, whether on a nearby or on the
cloud, and no volunteering nodes are available to host
the required services. In this case, the user has to wait for
the joining time of the volunteer with the orchestrator.

2) The cloud plays the role of an orchestrator because of
lack of fog resources. In this case, the user has to wait
for the joining time for the volunteer with the cloud
orchestrator.

3) The Kubeadm cluster needs to be built from scratch. In
this case, the user has to wait for the whole orchestrator
and fog initialization.

4) The worst case where resources are not available and
requests can only be served by the cloud.

1) Experiment Setup: Kubeadm orchestrator was initialized
on both the Amazon Web Service instance and Windows 7 vol-
unteering orchestrator. Supposing that the Pi2 machine near the
requesting user was the chosen fog by the orchestrator(cloud
or nearby), the orchestrator sends a join command to the newly
selected fog to become part of the Kubeadm, and wait until all
the required pods are running properly on that fog to establish
the connection with the master. After that, all the components
represented in our architecture, which should run on the fog,
are pushed to Pi2 volunteer. We started the experiment without
any fog initialized in the area of a user requesting our service
while sending a different number of requests simultaneously to
the cloud until the fog is initialized and all requests are served
by it. We also studied the time of creating a new orchestrator
on a volunteer and joining a fog to it. We compared these
scenarios with the response time of a regular cloud, hosting
the service.

2) Experimental Results: In the results shown in Fig. 4, the
four cases discussed are implemented and analyzed. At the
beginning, all requests are served by the cloud until the fog
gets ready in each of the four possible scenarios. The results
of these test cases are analyzed as follows:

• In the case of having the cluster initialized on Windows7
orchestrator, the user waits for a total of 25s until the
Pi2 is ready and serving as fog. This includes the time
of joining the cluster and running the service.

Fig. 4. Response Time of Simultaneous Requests Sent to On-Demand Fog
Running On Pi2 as Fog With Cloud as Orchestrator Against Nearby Windows7
as Orchestrator, Initialized cluster from scratch on volunteers, and Regular
Cloud.

TABLE II
SERVICES SELECTED FROM GOOGLE CLUSTER 2011 DATASET

• The absence of an initialized orchestrator and lack of
resources to build one, results in using the cloud as
orchestrator. The user then waits for around 38s to get
the Pi2 ready and running. Therefore, it is less time con-
suming to use a nearby volunteering orchestrator (like in
the previous scenario).

• Another possibility is the presence of available resources
allowing our framework to create the cluster from scratch
including the orchestartor initialization, fog joining, and
service preparation times. The results show that 64s are
needed to prepare the cluster.

As discussed in our proposed architecture, the cluster should
be created beforehand assuming that enough resources are
available. To achieve such assumption, a pricing model can be
proposed to motivate volunteers in joining a Kubeadm cluster.
Such model is out of the scope of this paper and introduced
as a future work.

C. Experiment 3.1 - Evaluation of the Container Placement
Model

As previously mentioned, best case scenarios were taken in
the last experiments, where we assumed that the volunteer’s
selection and the service placement on devices are optimal,
which is not the case in real life environment. As a solution,
we proposed the multi-objective container placement model.
This section shows the advantage of integrating our MA in
the proposed framework. Containernet [31] simulator is used,
and promising results are shown.

1) Experiment Setup: In our conducted experiments, all
weights are equal to 1/5 to ensure uniform influence of each
objective function on the final decision. In addition, the con-
stant C of equation 10 is equal to 10 and the priority value Pi of

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on June 25,2021 at 03:51:42 UTC from IEEE Xplore. Restrictions apply.

SAMI AND MOURAD: DYNAMIC ON-DEMAND FOG FORMATION OFFERING ON-THE-FLY IoT SERVICE DEPLOYMENT 1037

TABLE III
HOSTS SELECTED FROM GOOGLE CLUSTER 2011 DATASET

service i is either zero or one (as shown in table II), indicating
a high vs low priority to push a service. Therefore, CPi can
either be 1 or 10. Moreover, the algorithm stops when it loops
1000 times or earlier when the solution converges. To eval-
uate our model, we build two different scenarios by passing
different inputs of hosts and services to the MA, as shown in
tables II, III, and IV. The input passed to the Memetic solution
does not assume known topology or pre-selected fogs. This
MA model produces container/service placement decisions.
To visualize their effectiveness, we picked the first scenario
in Table IV and compared its MA decision with a worst case
selection and two outputs of a simple search algorithm that
considers the first fit of an objective at a time (long time or
short distance). A worst case scenario can happen when the
selection has the longest distance from the user and the short-
est time availability. In [16], the objective of maximizing time
availability constraint of the fog is not considered. Therefore,
we show the importance of considering this objective func-
tion in our case by replicating their work and removing the
contribution and effect of F3 in equation 11. We refer to this
solution as the first fit on a short distance.

To test the output of the MA in a real scenario, we used
Containernet simulator. For our simulation, we get the out-
put of the MA as the assignment of services on hosts, where
services are images pulled by each Docker host when the sim-
ulation starts. In Docker, we can assign CPU, Memory, and
Disk constraints. Based on the services needed, we chose suit-
able hosts. We added users as hosts and linked all of them
with switches. The link delay is specified based on the dis-
tance of each service/container to the host. Links up or links
down feature in containernet simulates the reachability of a
fog. Accordingly, we can disconnect a user from a fog device
while the simulation is running. Accessing the terminal of each
host is also possible to communicate with fogs and ask for
services. Whenever the link is down, the requests go to the
cloud host with the highest networking delay on the link.

The aim is to keep a record of the time it takes to respond
to each user’s requests of service hosted on fog volunteers
by changing the number of requests. Results are obtained to
show the relevance of our main approach combined with the
MA solution for our proposed multi-objective optimization
problem formulation. First, the search algorithm finds the first
host with the highest time availability and assign as many
services to it as it can handle. Similarly, for the distance fac-
tor, the available volunteer closest to the user is considered
first in the decision as in [16]. The computation time of the
MA depends on how many generations and individuals per
generation we want as possible solutions.

TABLE IV
TWO SCENARIOS COMPOSED OF HOSTS AND SERVICES

To get a list of services and volunteers with their require-
ments and capacities, we referred to Google Cluster Usage
Traced dataset of 2011 [32]. This data provides a list of tasks
to be pushed on available hosts. The tasks are running on
hosts in an isolated way using containers. The Google Cluster
dataset states the actual capacity of each host, vs. the resources
requirements of each task to be executed on a host. Services
are tasks to be executed inside containers on a host inside a
cluster which is the volunteer in our case.

To use this data, we randomly sample 10 services and 6
hosts, as shown in tables II and III. Adding random time in
seconds and distance in meters to the sampled data, we get
the results of table III that symbolizes the input of volunteers
capacities. Similarly, the priority level is added to table II,
where 0 means a low priority. The sum of CPU, Memory, or
Disk requirements sums up to 1 within the same cluster.

Flask framework is used to implement the Web service men-
tioned previously using Python. Our implementation for the
MA follows the same structure of [15]. Our code is written in
C programming language.

2) Experimental Results: In each Scenario, we have a set of
input Si needed to be pushed and a list Hj of volunteers. The
MA decision model produces a placement output of Kij . We
varied the number of services and hosts, as well as services
requirements and hosts capacities, as shown in Table IV. The
aim is to show how our MA placement algorithm produces
efficient results compared to existing work.

The memetic output of scenario 1 is as follows. S1 is
assigned to H3, S2 is assigned to H4, and S3 is assigned to H2.
In table III, H4 has the highest value of time availability and
the lowest value of the distance from users. This interprets
why H4 got assigned the service with high priority. H4 will
exceed its allowed resources to run more containers. If we
compare all other hosts, we can see that H2 and H3 have
a better value in term of both high availability and low dis-
tance. Our objective is to maximize survivability and minimize
distance. This is why H2 and H3 are the best choices for
the remaining services that have low priority. Furthermore, all
services are pushed, including S2 with priority equal to one,
and we used the minimum number of volunteers possible to
host all the required services. Moreover, all the constraints of
our multi-objective problem are respected. The memetic output
of scenario 2 is as follows. S1, S3, and S6 with low priority
are pushed to H7. QoS is preserved, where all services with
priority one are pushed first to hosts having longer time serv-
ing and a short distance from the user. S2 is pushed to H2, S4

is pushed to H3, and S5 is pushed to H1. All services are
pushed, and all constraints are met.

Performance Analysis: To emphasize on the effectiveness
of our decision model, we decided to verify the results of
scenario one compared to the worst case scenario and two

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on June 25,2021 at 03:51:42 UTC from IEEE Xplore. Restrictions apply.

1038 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 17, NO. 2, JUNE 2020

Fig. 5. Response time of the different number of requests sent simultaneously
to S1 hosted on h6, h7, h1, and h5 that are the output of worst-case scenario,
first fit with the lowest distance, first fit with highest time availability, and
MA decision.

random search outputs. The response time of S1 hosted on
the decided volunteering fogs with respect to the number of
requests sent from the user are reported in Fig. 5.

Results show four different user experiences based on the
decision of service S1 placement on the available seven hosts.
The worst case scenario assigns S1 to H6, which has a low
time availability and is 1 km away from the user. It starts
with a response time of 0.123 for one request, which shows
the networking delay caused by that distance. H6 serving time
is 60 seconds. After the 60s, we dropped the link between the
user and H6 in containernet to simulate its non-availability. As
a consequence, we can see that the packets are received with a
higher delay, which means the user is served by the cloud. H7

as the selecting host is an output of a first fit based on shortest
distance with low time availability which corresponds to the
genetic solution proposed in [16]. Similarly, H7 serves its 65s,
and the requests continue their flow to the cloud after that. For
H1, it is a case where the first fit is on the host having the
highest time serving. However, the distance is high, and the
delay affects the performance as shown in the above image.

A major gain is achieved if we compare the results of the
mentioned solutions to the MA decision, which select H3 as
the best volunteer to host S1. Moreover, to show the advantage
of our MA on the user experience, scenario one is implemented
using containernet and compared to a similar work in [16].
Fig. 6 shows the response time of each service after chang-
ing the number of requests sent simultaneously. The results
illustrate the advantage of using our MA solution by drasti-
cally decreasing the response time compared to results of [16]
where survivability factor is not considered, and all services
are pushed to H7 which leaves the cluster after 65s. The
slight differences in response time between the three services
is because of the distance difference to the user. All services
continue to be served by the fogs because the survivability
factor is large enough. After 300s H3 stops serving, and the
requests to S1 will either go to the cloud, or the orchestrator
will prepare another fog based on the available ones decided
by the MA.

D. Experiment 3.2 - Proof of Scalability and Near Optimality

This experiment shows the abilty of our Memetic solution
to scale and converge to near optimal solutions given a large

Fig. 6. Response time of different number of requests sent simultaneously
to services S1, S2, S3 of Scenario 1 that are hosted on H3, H4, and H2
respectively based on the MA decision and all on H7 in case of [16].

Fig. 7. Near Optimal Solutions for 100x40 and 50x20 Input Sizes.

input size, which is the case in real life scenarios. 100x40 and
50x20 input sizes are considered, where AxB means A con-
tainers to B hosts. The dataset is selected randomly from the
Google Trace dataset. In our simulation, individuals’ size is
100 and the number of generations (iterations) is 1000. For
each input size, we ran the algorithm 10 times and plotted the
best 3 solutions for each input (Fig. 7). The output is a normal-
ized combination of all objective functions with equal weights
of 1/5. The optimal solution is retrieved using an exhaustive
search.

The 100x40 and 50x20 inputs are considered relatively large
compared to the two scenarios of table IV. For such inputs
and as shown in Fig. 7, our algorithm shows the ability to
scale and converge while approaching the optimal solution.

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on June 25,2021 at 03:51:42 UTC from IEEE Xplore. Restrictions apply.

SAMI AND MOURAD: DYNAMIC ON-DEMAND FOG FORMATION OFFERING ON-THE-FLY IoT SERVICE DEPLOYMENT 1039

In another experiment where small input is considered, the
algorithm proves to reach the exact optimal solution.

VIII. CONCLUSION

The unavailability of fog devices to serve IoT users and
the ability to deploy, update, and remove the services run-
ning on fogs are major issues and challenges affecting the
benefits of fog architecture. In this paper, we addressed the
aforementioned limitations by proposing a novel approach
allowing dynamic on-demand creation of fogs on any volun-
teering device where micro-services are deployed on the fly.
The framework includes all the modules needed for realizing
the proposed scheme. The containerization technology Docker
orchestrated using Kubeadm is used. Moreover, a heuristic
model based on Memetic Algorithm is elaborated for solving
the multi-objective fog selection and container/service place-
ment problem. Our experimental results illustrate clearly the
advantages and contributions of our solutions. The first two
experiments illustrate major improvement compared to exist-
ing work while exploring the feasibility and efficiency of fog
formation near the user. Moreover, the last experiment offered
major support for adopting the proposed scheme in a real-life
environment. As future directions, we are currently develop-
ing a security model to secure deployment of services on
volunteering fogs benefiting from our architecture. We also
aim to build a pricing model that motivates volunteers to join
our framework. Another direction is to work on an efficient
caching mechanism that can minimize the number of services
deployments, as well as fog resources usage.

REFERENCES

[1] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its
role in the Internet of Things,” in Proc. 1st Ed. MCC Workshop Mobile
Cloud Comput., 2012, pp. 13–16.

[2] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio, “An updated
performance comparison of virtual machines and Linux containers,” in
Proc. IEEE Int. Symp. Perform. Anal. Syst. Softw. (ISPASS), Philadelphia,
PA, USA, 2015, pp. 171–172.

[3] D. Merkel, “Docker: Lightweight Linux containers for consistent
development and deployment,” Linux J., vol. 2014, no. 239, p. 2, 2014.

[4] D. Jaramillo, D. V. Nguyen, and R. Smart, “Leveraging microser-
vices architecture by using docker technology,” in Proc. SoutheastCon,
Norfolk, VA, USA, 2016, pp. 1–5.

[5] G. Sayfan, Mastering Kubernetes. Birmingham, U.K.: Packt, 2017.
[6] P. Moscato, C. Cotta, and A. Mendes, “Memetic algorithms,” in

New Optimization Techniques in Engineering, Heidelberg, Germany:
Springer, 2004, pp. 53–85.

[7] R. K. Naha et al., “Fog computing: Survey of trends, architec-
tures, requirements, and research directions,” IEEE Access, vol. 6,
pp. 47980–48009, 2018.

[8] C. Mouradian, D. Naboulsi, S. Yangui, R. H. Glitho, M. J. Morrow, and
P. A. Polakos, “A comprehensive survey on fog computing: State-of-
the-art and research challenges,” IEEE Commun. Surveys Tuts., vol. 20,
no. 1, pp. 416–464, 1st Quart., 2018.

[9] M. A. Salahuddin, A. Al-Fuqaha, and M. Guizani, “Software-defined
networking for RSU clouds in support of the Internet of vehicles,” IEEE
Internet Things J., vol. 2, no. 2, pp. 133–144, Apr. 2015.

[10] P. Bellavista and A. Zanni, “Feasibility of fog computing deployment
based on docker containerization over RaspberryPi,” in Proc. 18th Int.
Conf. Distrib. Comput. Netw., 2017, p. 16.

[11] H.-J. Hong, P.-H. Tsai, and C.-H. Hsu, “Dynamic module deployment in
a fog computing platform,” in Proc. 18th Asia Pac. Netw. Oper. Manag.
Symp. (APNOMS), Kanazawa, Japan, 2016, pp. 1–6.

[12] R. Morabito, I. Farris, A. Iera, and T. Taleb, “Evaluating performance
of containerized IoT services for clustered devices at the network edge,”
IEEE Internet Things J., vol. 4, no. 4, pp. 1019–1030, Aug. 2017.

[13] C. Pahl, S. Helmer, L. Miori, J. Sanin, and B. Lee, “A container-based
edge cloud PaaS architecture based on Raspberry Pi clusters,” in Proc.
IEEE Int. Conf. Future Internet Things Cloud Workshops (FiCloudW),
Vienna, Austria, 2016, pp. 117–124.

[14] C. Wöbker, A. Seitz, H. Mueller, and B. Bruegge, “Fogernetes:
Deployment and management of fog computing applications,” in Proc.
IEEE/IFIP Netw. Ope. Manag. Symp. (NOMS), 2018, pp. 1–7.

[15] F. López-Pires and B. Barán, “Many-objective virtual machine place-
ment,” J. Grid Comput., vol. 15, no. 2, pp. 161–176, 2017.

[16] O. Skarlat, M. Nardelli, S. Schulte, M. Borkowski, and P. Leitner,
“Optimized IoT service placement in the fog,” Service Oriented Comput.
Appl., vol. 11, no. 4, pp. 427–443, 2017.

[17] H. Tout, C. Talhi, N. Kara, and A. Mourad, “Selective mobile cloud
offloading to augment multi-persona performance and viability,” IEEE
Trans. Cloud Comput., vol. 7, no. 2, pp. 314–328, Apr.–Jun. 2016.

[18] H. Tout, C. Talhi, N. Kara, and A. Mourad, “Smart mobile computation
offloading: Centralized selective and multi-objective approach,” Expert
Syst. Appl., vol. 80, pp. 1–13, Sep. 2017.

[19] T. Dbouk, A. Mourad, H. Otrok, H. Tout, and C. Talhi, “A novel ad-hoc
mobile edge cloud offering security services through intelligent resource-
aware offloading,” IEEE Trans. Netw. Service Manag., vol. 16, no. 4,
pp. 1665–1680, Dec. 2019.

[20] M. Sookhak et al., “Fog vehicular computing: Augmentation of fog
computing using vehicular cloud computing,” IEEE Veh. Technol. Mag.,
vol. 12, no. 3, pp. 55–64, Sep. 2017.

[21] V. Kochar and A. Sarkar, “Real time resource allocation on a dynamic
two level symbiotic fog architecture,” in Proc. 6th Int. Symp. Embedded
Comput. Syst. Design (ISED), 2016, pp. 49–55.

[22] X. Hou, Y. Li, M. Chen, D. Wu, D. Jin, and S. Chen, “Vehicular fog
computing: A viewpoint of vehicles as the infrastructures,” IEEE Trans.
Veh. Technol., vol. 65, no. 6, pp. 3860–3873, Jun. 2016.

[23] M. Grinberg, Flask Web Development: Developing Web Applications
With Python. Sebastopol, CA, USA: O’Reilly, 2018.

[24] H. Sami and A. Mourad, “Towards dynamic on-demand fog comput-
ing formation based on containerization technology,” in Proc. Int. Conf.
Comput. Sci. Comput. Intell. (CSCI), 2019, pp. 960–965.

[25] H. Zeng, B. Wang, W. Deng, and W. Zhang, “Measurement and eval-
uation for docker container networking,” in Proc. Int. Conf. Cyber
Enabled Distrib. Comput. Knowl. Disc. (CyberC), Nanjing, China, 2017,
pp. 105–108.

[26] E. Falkenauer, “A hybrid grouping genetic algorithm for bin packing,”
J. Heuristics, vol. 2, no. 1, pp. 5–30, 1996.

[27] P. M. Pardalos, I. Steponavičė, and A. Žilinskas, “Pareto set approxima-
tion by the method of adjustable weights and successive lexicographic
goal programming,” Optim. Lett., vol. 6, no. 4, pp. 665–678, 2012.

[28] F. López-Pires, B. Barán, A. Amarilla, L. Benítez, R. Ferreira, and
S. Zalimben, “An experimental comparison of algorithms for virtual
machine placement considering many objectives,” in Proc. 9th Latin
America Netw. Conf., 2016, pp. 1–8.

[29] C. A. Coello Coello, G. B. Lamont, and D. A. Van Veldhuizen,
Evolutionary Algorithms for Solving Multi-Objective Problems, vol. 5.
New York, NY, USA: Springer, 2007,

[30] R. M. Ramadan, S. M. Gasser, M. S. El-Mahallawy, K. Hammad,
and A. M. El Bakly, “A memetic optimization algorithm for multi-
constrained multicast routing in ad hoc networks,” PLoS ONE, vol. 13,
no. 3, 2018, Art. no. e0193142.

[31] M. Peuster, H. Karl, and S. Van Rossem, “MeDICINE: Rapid
prototyping of production-ready network services in multi-PoP environ-
ments,” in Proc. 2016 IEEE Conf. Netw. Function Virtualization
Softw. Defined Netw. (NFV-SDN), Nov. 2016, pp. 148–153,
doi: 10.1109/NFV-SDN.2016.7919490.

[32] C. Reiss, J. Wilkes, and J. L. Hellerstein, “Google cluster-usage traces:
Format+ schema,” Mountain View, CA, USA, Google Inc., White Paper,
pp. 1–14, 2011.

Hani Sami is a Research Assistant with Lebanese American University. The
topics of his research include fog computing, vehicular fog computing, smart
vehicles, and reinforcement learning.

Azzam Mourad is currently an Associate Professor of computer science
with Lebanese American University and also an Affiliate Associate Professor
with the Software Engineering and IT Department, École de Technologie
Supérieure, Montreal. He has served/serves as an Associate Editor for the
IEEE OPEN JOURNAL OF THE COMMUNICATIONS SOCIETY, IET Quantum
Communication, and the IEEE COMMUNICATIONS LETTER, the General
Chair of IWCMC2020, the General Co-Chair of WiMob2016, and the track
chair, a TPC member, and a reviewer of several prestigious journals and
conferences.

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on June 25,2021 at 03:51:42 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/NFV-SDN.2016.7919490

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

