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Abstract— Observing the headway in vehicular industry, new
applications are developed demanding more resources. For
instance, real-time vehicular applications require fast processing
of the vast amount of generated data by vehicles in order to
maintain service availability and reachability while driving. Fog
devices are capable of bringing cloud intelligence near the edge,
making them a suitable candidate to process vehicular requests.
However, their location, processing power, and technology
used to host and update services affect their availability and
performance while considering the mobility patterns of vehicles.
In this paper, we overcome the aforementioned limitations
by taking advantage of the evolvement of On-Board Units,
Kubeadm Clustering, Docker Containerization, and micro-
services technologies. In this context, we propose an efficient
resource and context aware approach for deploying containerized
micro-services on on-demand fogs called Vehicular-OBUs-As-
On-Demand-Fogs. Our proposed scheme embeds (1) a Kubeadm
based approach for clustering OBUs and enabling on-demand
micro-services deployment with the least costs and time using
Docker containerization technology, (2) a hybrid multi-layered
networking architecture to maintain reachability between the
requesting user and available vehicular fog cluster, and (3)
a vehicular multi-objective container placement model for
producing efficient vehicles selection and services distribution.
An Evolutionary Memetic Algorithm is elaborated to solve
our vehicular container placement problem. Experiments and
simulations demonstrate the relevance and efficiency of our
approach compared to other recent techniques in the literature.

Index Terms— Vehicular on-boarding units (OBUs),
on-demand fog placement, vehicular fog computing, vehicular
edge computing, vehicular clustering, orchestration, container,
micro-services, Kubeadm, Docker, memetic algorithm.

I. INTRODUCTION

VEHICLES are mobile sensors generating high vol-
ume of data that should be processed in real-time.
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Hence, the demands of time critical applications require
fog computing to bring cloud intelligence near the edge by
hosting services next to users. Fog devices minimize the load
on the cloud by doing the major work, reduce networking
delay, enhance user’s devices battery life, and improve QoS
for various types of applications [1]. One of the essential
time-sensitive vehicular applications that demand fog comput-
ing is the self-driving feature. Autonomous driving requires
low latency and high processing power to offer an accurate
analysis of sensed data in order to make decisions, identify
objects, and plan trajectories. These data are generated by inte-
grated sensors, beams of radars, data shared by neighboring
vehicles, etc.

Many literature works explore the advantage of adding a
fog layer at the edge to support users. For instance, [2], [3]
[4] use static locations of fogs with specific services running
on them to target specific group of IoT devices. Similarly,
[5]–[7] use pre-defined locations of fogs, such as road side
units (RSU) to support vehicular users. These approaches use
Virtual Machines (VM) to migrate and host fog services based
on the user’s needs (on-demand). Furthermore, Authors in [8]
proposes a model for offloading vehicular computations to
RSUs. Despite the advantages RSUs bring to support vehicles,
major limitations still need to be addressed. For instance, geo-
graphically fixed fogs (RSUs) have limited network coverage
and, therefore, limited availability to serve cars. Besides, using
a VM to host services on fogs leads to high deployment delay
and major resource consumption. This results in low Quality
of Service (QoS) and limited service flexibility when updates
are needed. Furthermore, considering the case when RSUs are
overloaded with requests, its performance can degrade to affect
the response time.

In parallel, personal devices (smartphones, laptops. . .)
and more importantly vehicles’ on-board units (OBU) have
evolved from simple devices that can track the vehicle location
and speed, to networking devices capable of communicating
with neighboring vehicles and opening a stable connection
with servers on the cloud. OBUs are also capable of perform-
ing various computation tasks, depending on their resource
capabilities. Buses in modern cities are now equipped with
multiple OBUs that can support applications to help drivers
and provide luxury to passengers. In this context, the improve-
ment in wireless technology, the new development of services,
and the evolution in OBUs are disclosing a potential in enhanc-
ing the vehicular applications. This potential lies in employing
the available technologies and resources into vehicular fog
computing clusters that can enrich the user experience and
allow a new development paradigm targeting the vehicular
market. Yet, the main challenges are:

• OBUs and personal electronic devices still lack the
resources capacity to efficiently download and start heavy
VMs by their own [9].
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• Car mobility and erratic behavior of drivers make it
a challenge to maintain a stable network connection
between cars and service providers.

• Connecting users with vehicular fogs can exhaust the
Base Stations (BS) due to their limited resources [10].

Therefore, forming vehicular fog requires computing and
storage resources, dynamic service updates, and reliable con-
nection between vehicles.

In this paper, we overcome the aforementioned limi-
tations by proposing Vehicular-OBUs-As-On-Demand-Fogs.
We make use of one of the well-known containerization
technologies, Docker, to deploy our services on OBUs on the
fly while transforming cars to fog devices. Vehicles in our
architecture form a cluster that can host micro-services related
to one service or more. The advantage of micro-services can
be summarized as a lighter load on small machines, enabling
distributed processing, and easier build and maintenance for
applications [11]. These clusters are managed by orchestra-
tors/masters using Kubernetes utility Kubeadm [12]. We also
adopt a technique proposed in [10] to provide a long-time
stable connectivity between users and serving clusters. To the
best of our knowledge, we are the first to propose a scheme
that uses OBUs and personal devices to host fogs embedding
containers of micro-services on the fly, and at the same time,
provide long term support for moving users regardless of their
connection status. Through our approach, we can open the
door for a new development area serving the new generation
of vehicular applications. The main contributions of this paper
can be summarized as:

1) Proposing a novel Vehicular-OBUs-As-On-Demand-
Fogs framework that efficiently initializes clusters of
vehicles to benefit from OBUs and on-board resources to
push and manage services with the least possible costs.

2) Building an efficient and adaptable networking architec-
ture combining cellular technologies and the vehicular
ad-hoc wireless network (802.11p) to maximize the
connection time between vehicles.

3) Formulating and solving a resource selection and
micro-services placement problem on clusters of vehi-
cles, named “Vehicular Container Placement (VCP)”,
and adapt its evaluation to different scenarios such as the
number of pushed services, micro-services connection
time, cluster lifetime, and the number of active vehicles.

The rest of this paper is organized as follows. In section II,
we go over the related work and discuss their limitations.
In section III, we discuss our proposed architecture and
methodology. We then extend our approach by formulating
and presenting a solution for the VCP in section IV. We then
discuss a solution to recover from cluster failures in section V.
Sections VI and VII are depicted for testing our architecture
and the VCP solution. Finally, we conclude with future
directions in section VIII.

II. RELATED WORK

In this section, we overview the contributions of several
related literary works and discuss their limitations. The areas
selected are related to supporting mobile and vehicular appli-
cations through (1) the use of cloud and RSUs as processing
power and VMs for hosting services, (2) the use of vehicular
nodes as computing infrastructure to serve other vehicles,
(3) the use of containerization in a fog-related contexts to
serve IoT devices, (4) the use of hybrid network architecture

to keep vehicles connected, and (5) the use of Memetic algo-
rithm (MA) to solve service placement problems on resource
infrastructure.

A. Approaches Supporting Mobile and Vehicular Applications

Several approaches proposed to support mobile and vehic-
ular applications by migrating tasks to the cloud in the
context of mobile cloud [13], [14]. However, these techniques
are subject to network delays with the cloud, which affects
time sensitive applications. To solve these problems, several
approaches proposed the use of fog/edge computing to support
the future of VANET/MANET applications, such as [7]. The
authors in [7] proposed the idea of RSU clouds that are
managed by an SDN controller and uses virtualization for
services migration to support the internet of vehicles. Three
drawbacks affect this architecture. First, SDNs are subject
to network and computational delays when overloaded with
traffic. Second, VMs are time-consuming to download. Third,
is the assumption of RSUs presence anytime, which is not
always true in real life. In [15], the authors proposed a
follow-me cloud (FMC) approach that migrates services on
anchor routers near the edge to support mobile users. Micro
data-centers are used to cache VMs copies for later migration
on the edge. The authors assumed that routers can cover users
in every BS cell and used VMs to host and migrate services
while a user is moving.

In this paper, we prove by experiments how our proposed
approach can overcome the limitations of [7] and [15], which
also applies to different approaches using VMs and RSUs to
support mobile and vehicular users.

B. Volunteering Vehicular Fogs as Infrastructure

Authors in [16] proposed the use of vehicular fogs as
infrastructure named vehicular fog computing (VFC), where
a central main fog covering a shopping mall can benefit from
volunteering cars present in the parking area. This paper was
limited to the use of known resources such as parked cars’
computation power only. Furthermore, the technology used
to push and run services on newly joining fog volunteers
was not studied. Authors in [17] elaborated on the ability
to use vehicles as infrastructure to build a fog environment.
In their study, moving and parked vehicles can be used as
infrastructure to support moving users. Consequently, we use
in this paper OBUs and personal devices to build our fog
solution for continuous vehicle support. In [18], authors create
an on-demand vehicular cloud counting on RSUs. Finding a
Star on the road is the key idea. A Star offers computation
and storage power while moving. This information is shared
with and published by the nearest RSU so that any user can
reserve the star’s resources to host its requested services. The
coverage range of RSUs, network disconnection with the Star,
and service updates/installments affect the feasibility of this
solution. In [19], authors use neighboring mobile devices’
resources to offload mobile tasks by forming a mobile edge
cloud, which confirms the potential of using mobile devices
to perform computational tasks.

C. Fog Containerization

To the best of our knowledge, none of the available work in
the literature considers the use of containerization technology
to host services on vehicles. However, many others used
containers in the context of fog devices to serve IoT users
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located in fixed locations. In this section, we discuss some of
these contributions.

Authors in [20] prove the potential of using Docker tech-
nology to run containers on fog devices with the ability
to adjust services hosted whenever needed. A model was
proposed in [21] where the dynamic deployment of services
on helper nodes of the main server using Docker is possible.
They called these helper nodes ”fogs”. So it is feasible to
remove, add, stop, and run any service on a physically known
fog anytime. In [22], authors focused on the ability to use
lightweight Docker containerization technology to support
service provisioning over IoT devices.

In our recent work [23], [24], we were able to implement
a framework capable of forming fog devices on the fly on
any volunteering devices. This was possible with the help of
Kubeadm utility and Docker containerization technology to
form the cluster and push the needed services. In this paper,
we adopt the use of the same technologies but in the context
of Vehicluar-OBUs-As-On-Demand-Fogs, where it is more
challenging to maintain the service availability and provide
an optimal service placement on randomly moving vehicles.

D. Vehicular Hybrid Network Architecture

Authors in [10] proposed a hybrid network architecture
to keep a VANET connected with the help of e-NodeBs.
The master node uses two network adapters: (1) Long Term
Evolution LTE to connect cluster’s masters and (2) Ad-hoc
vehicular wireless connection 802.11p to connect vehicles in
the same cluster. In our work, we adopt this architecture for
the purpose of keeping vehicles connected by adding another
layer of RSUs that can further minimize the load on BSs.

E. Vehicular Container Placement Problem

In [25], researchers proposed an interactive MA to solve the
proposed multi-objective formulation of the virtual machine
placement problem on the cloud. The goal is to find an
efficient distribution of VMs on corresponding available hosts
concerning the conflicting objective functions. This problem
can be mapped to our VCP problem by considering the VMs
as containers, and the available hosts to run the VMs as the
vehicular fog devices.

III. VEHICULAR-OBUS-AS-ON-DEMAND-FOGS

ARCHITECTURE

A single OBU is not enough to satisfy all users’ requests;
therefore, hosting services on neighboring cars having simi-
lar driving patterns can be a solution. The connection time
between vehicles should be maximized in order to maintain a
high rate of request/response packets delivery. Furthermore,
OBUs must be clustered and monitored in a Master-Slave
approach in order to increase resource capacity. Services
should be divided into micro-services for lighter deployment
in the form of containers. Another problem that arises while
trying to initialize the vehicular Kubeadm cluster is the master
node election for a group of available OBUs. Also, whenever a
failure or disconnection happens in the cluster, it is costly to re-
initialize a new cluster while the user is waiting for services.
Therefore, a recovery method must be applied to maintain
service availability and cluster connectivity.

In this section, we present our proposed architecture to
overcome the aforementioned challenges. We then provide a
description of the role of each component in the architecture
per layer. Finally, we discuss a possible interaction between
the components using a test case.

A. Architecture Overview

The architecture shown in Fig. 1 is composed of five linked
layers: BS, Road Side Unit Controllers (RSUC) - RSUs,
Kubeadm masters, fog devices (Kubeadm worker nodes), and
requesting users. This architecture is layered by power and
importance from top to bottom. In other words, a layer above
has supervision of what is happening on the layers below.
Moreover, if a layer below fails to maintain a connection
between a fog and a user, the request is escalated to the
layer above. A connection between BS-RSUC-RSU is called
infrastructure to infrastructure (I2I). The top layer is composed
of the BS or cellular towers that are connected using Ethernet.
In our architecture, the task of a BS is to connect a requesting
user to a cluster master node in another BS range and broadcast
a user request for service hosting to the underlying RSUs
through RSUCs using Ethernet. The RSUC routes requests
between RSUs and shares their information, including the
position of the master nodes they have in range, the services
hosted by every Kubeadm cluster, and the list of Docker
images they have. The third layer is composed of RSUs storing
images of the users’ requested services, and it tracks the
position of the serving Kubeadm master node to connect users
with services. This type of connection is called vehicle to
infrastructure (V2I). The purpose of adding the RSUC-RSU
layer is to minimize the traffic load and management on BSs.
The next layer comprises the Kubeadm master nodes, which
cluster the fog devices. Masters or orchestrators are dual-
interface devices able to connect using 802.11p or through
the cellular network. Master cars are elected locally, and
they keep a vital connection with the BS, RSU, and fogs in
the range all the time. The main job of the master node is
to decide on the best distribution of services on the set of
selected vehicular fogs and to monitor the containers’ status.
The master node sends resources offers to the user and waits
for approval before pushing services to its cluster. A failure on
the master node can be recovered whenever enough resources
on the cluster are available to enable the high availability
feature provided by Kubeadm. A device in the fog layer can
communicate to a nearby car or the RSU using 802.11p only.
It is responsible for hosting the assigned micro-services by the
master node. The fog also updates the master node with its
profile and availability. The communication between vehicles
in a Kubeadm cluster is called vehicle to vehicle (V2V). This
interconnection is kept through exchanging ”Hello” packets
using 802.11p. In Kubeadm, any failure in a worker node is
reported to the master. The user initiates a request to host
services nearby, and then receives several offers coming from
available nearby clusters. A special decision algorithm running
on the user side decides to accept offers that maximize its
support time. The user can send another request to host other
or similar services if not satisfied with the QoS level received.

B. Node Architecture

In this section, we discuss the functionalities of each compo-
nent per layer in our proposed approach. The BS, RSUC, and
RSU communicate together to keep the user connected with
the master node by running the Master Manager. Moreover,
the RSUC runs the Container Registry Manager responsible
for providing Docker images to vehicular fogs. The Kubeadm
Master and Fog nodes coordinate to form a stable Kubeadm
cluster with high service availability and maximum duration
of user support while driving. The master manages fogs and
containers running on them through the Fog/Micro-Service
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Fig. 1. Proposed Architecture.

TABLE I

NODE ARCHITECTURE PER LAYER

Manager, and decides on the best distribution of services on
the set of available vehicles in its cluster. Containerization
required modules should be installed on the cluster nodes.
The user monitors the performance of the serving Kubeadm
clusters through the QoS manager and also decides to send
a service hosting request when needed. A user accepts an
offer through the Decision Module for Offer Acceptance. The
architecture components per layer are shown in Table I.

In what follows, we provide a detailed explanation of the
functionalities within each component.

1) Master Manager: The RSU shares the master node
information in range with the RSUC and BS. When the master
node moves into the range of a new RSU, the old RSU notifies
its neighbors of the joining master node. The new RSU,
in turn, starts sending “Hello” packets to the master to ensure a
vital connection. The Hello reply messages contain the master
profile. The main functionalities of the master manager are to:

Connect User and Master Node:

• In case the module is running on BS: The BS receives
a connection request from a user to a master node in
two cases: either they are in the range of the BS but
cannot communicate through an RSUC/RSU, or they are
in the range of two different BSs. This connection uses
the wireless cellular network.

• In case the module is running on RSUC/RSU: The
RSUC/RSU is used to connect a user with a master
node even if under different RSUs ranges. The RSU
is aware of the master location within an RSU range.
This helps to minimize the network load by limiting the
broadcast messages into one RSU range. This connection
uses 802.11p.

Send Requests and Collect Offers: The BS, RSUC, or RSU
receive requests from users to allocate resources on available
Kubeadm OBUs clusters. This request is broadcasted to all
master nodes either through the BS or the RSU. Master nodes
reply with the available resources. The BS or RSU replies to
the user with the available clusters to serve (offers sent from
the masters). Furthermore, a cluster can serve one or many
users depending on their current load and suitability for the
user based on the mobility metric. Accordingly, if clusters with
the requested service(s) were already initialized, the RSU may
also include them as other possibilities in the offer, along with
their current load. The RSU then waits for an acceptance or
rejection decision from the user.

Master Status Monitoring and Failure Recovery: In the case
of a master node leaving the cluster, a recovery algorithm is
triggered by the master manager to maintain the cluster con-
nectivity and service availability. This algorithm is described
in Algorithm 3 of Section V.

2) Container Registry Manager: Usually, the container reg-
istry is placed on the cloud for users to push and pull images
from. In our architecture, we bring these registries closer to
the user to minimize the time of pulling the required micro-
services. The RSU has a container image registry holding
micro-services frequently requested by users. All RSUs share
information about services they are hosting to their RSUC by
replying to the container registry manager’s request. In case a
fog node asks the RSU for an image it does not have, it asks
the RSUC for the location of this service. Once found, the RSU
uses Ethernet to get the image, and 802.11p at a maximum rate
of 54Mb/s to send it to the fog.

3) Containerization Required Modules: Kubeadm is
a suitable orchestration technology in our architecture
because it supports using various types of devices forming
the cluster. Kubeadm orchestration uses the de-facto
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containerization technology, Docker. Kubelet should be
installed on the device to ensure communication with the
master node and allows different pods to communicate
together. Kubelet also helps the master node in checking
services’ health. Kubectl is used to run Kubeadm commands
on the master and worker nodes. Docker and Kubeadm, with
the mentioned dependencies, should be installed on vehicles
to form the clusters.

4) Profiler: This component runs on the master and worker
nodes of a Kubeadm cluster. The module uses GPS to get
the current position of the vehicle and calculate the speed.
The profiler also gathers information about the available CPU,
memory, and disk space on the vehicle. The route followed to
reach the destination is provided through the car system. The
vehicle might also offer its services for a specific period (can
be used for billing purposes), so the time availability is also
provided by the profiler.

5) Fog/Micro-Service Manager: This component runs on
the master node and is responsible of managing the worker
nodes in the Kubeadm cluster as well as the running contain-
ers. The purpose of this component is to keep the fog nodes
available and to overcome any physical or service failures. The
main functionalities can be described as follows:

Keep Connection Alive: Because of the random mobility
of vehicles, a connection has to be checked periodically
between fogs and master nodes. Likewise, the master exchange
Hello packets with the RSU containing the cluster profile.
Connection checks functionality is implemented in Kubeadm.

Assign Services to Fogs: After getting an offer approval
from the user, the master assigns services to fogs based on the
VCP algorithm. The master sends a pull command containing
the list of micro-services to be installed on each node.

Fog Status Monitor and Failure Recovery: This function-
ality is triggered in two cases. Either a container on the fog
stopped running and failed to restart, or the fog suddenly went
out of the cluster. This algorithm is discussed in Algorithm 2 of
Section V.

Load Balancing on Fogs: The master node is also respon-
sible for monitoring the load on fog devices. When needed,
the master node either creates more copies of the overloaded
containers in its cluster. This feature is provided by Kubeadm.

6) Cluster Resources Manager: After receiving a service
installment request from a user, the master uses the Cluster
Resources Manager to get a matrix of the available resources.
This cluster information is used to get the maximum time
availability, speed, and maximum destination reached by all
nodes in the cluster. This information are used to construct an
offer message for the user to accept or reject.

7) VCP: The VCP is a decision module for volunteers selec-
tion and micro-services distribution. This module is presented
in Section IV. Its purpose is to select the best set of vehicular
resources to host a set of requested services.

8) Kubeadm Cluster Initializer and Master Node Election:
Kubeadm cluster initialization includes the time to initialize
a master node and for worker nodes to join and install the
required modules. We avoid this cost by making the cluster
ready beforehand. The first step in the cluster initialization is
the election of a master node, which happens locally.

Master Node Election: Once a pair or group of cars
approach each other, a master node election based on QoS
metric takes place to initialize the Kubeadm master node on
the proper device. The QoS metric includes the bandwidth,
speed, distance from neighboring cars, serving time,

and resources available to host the required orchestration
modules. The high bandwidth is important to ensure reliability
with the BS, and the speed, distance, and serving time are
necessary to maintain cluster stability. Implementation of the
master election algorithm is provided in [26] as part of
the QoS-OLSR protocol. The election between vehicles is
happening locally, where each car calculates its QoS score.
Every vehicle receives all QoS scores from 2-hops neighbors
based on multiple vote strategy. Based on the highest score,
a master node is nominated. Therefore, multiple neighboring
clusters can be created and connected through Multi-Points
Relay nodes. The QoS is calculated based on the proportional
bandwidth and proportional speed as follows:

QoSj =
BWj

Nj
× RatioDj

RatioAvgSj
(1)

where:
- j is a vehicle in the set of available ones.
- BWj is the bandwidth that j can offer.
- Nj is the set of neighbors of j.
- RatioDj is the ratio distance bypassed by j before
reaching its destination.
- RatioAvgSj is the average ratio speed of j.

Cluster Formation: After electing the master node,
Kubeadm init command is executed on the master. This
command outputs a unique token to be shared with nodes
willing to join using Kubeadm Join command. The required
modules in our architecture are installed on the master node.
The architecture modules on the fog layer are also installed on
the worker nodes to make them ready to pull and run services
on the fly.

Resource Sharing Between Clusters: Once a cluster is
formed, the master waits for users’ requests to host services
and start utilizing the cluster’s resources. However, because
these resources may stay in some cases idle for a long
time, a cluster can share resources with neighboring masters
upon request. Consequently, an idle vehicle checks for the
possibility of joining the requesting clusters based on its
mobility and resources metrics.

9) Offer Acceptance Decision Module: In order to avoid the
limitations of availability and computation overload on RSUs,
this model should be placed on the user side. A user receives
multiple offers from different master nodes. The user accepts
the offer that helps in reaching the minimum required QoS
for the longest period while moving towards its destination.
A machine learning model is useful in this situation to study
the history of accepted offers by the user. However, this is out
of the scope of this work. For now, we assume that the user
accepts the best offer by default.

10) QoS Manager: The QoS level served to the user is
checked by the QoS Manager by measuring the processing
and networking delays. If the minimum QoS required by the
service is not met, the user sends a request for service hosting
to the RSU.

C. Components Interactions When Hosting a New Service

Below, we show the flow of interactions between different
components when a user issue a request to host services on a
vehicular fog cluster. The flow is as follows:

1) The QoS manager initiates a service hosting request to
the nearest RSU.

2) The master manager of this RSU receives the user
request and broadcasts it to the available masters.
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TABLE II

TABLE OF NOTATIONS

3) A master node receives the service request and calls the
cluster resources manager to check its availability.

4) The cluster resources manager collects all the workers’
profile information from the fog/micro-services manager
and asks the VCP for a placement decision. This infor-
mation is sent back to the user as an offer.

5) When the user accepts the offer, the RSU starts preparing
the micro-services to be hosted on the new fogs and
informs the orchestrator to reserve the resources.

6) In case the RSU does not have the requested user
services, it calls the RSUC’s container registry manager.

7) The orchestrator pushes these services on its fogs.
8) The fog/micro-services manager uses the VCP output to

place the micro-services on vehicular fogs.

IV. VEHICULAR CONTAINER PLACEMENT (VCP)

Vehicles in VANET tend to change their speed randomly,
making it a challenge to maintain cluster stability. In our
architecture, vehicles are the primary source of computational
power, including any devices on board to host micro-services.
Furthermore, fog nodes are asked to host different services
based on the user’s request, which makes it another challenge
of mapping each micro-service to the proper vehicle. Finding
the optimal migration of micro-services to available cars is
an NP-hard problem. The objectives of getting the optimal
solution for this problem are to maximize the cluster sta-
bility/connectivity or serving time, maximize the connection
time between micro-services, maximize the number of pushed
services, and minimize the number of active vehicles while
meeting several constraints. In this section, we define the
VCP Problem and prove it is NP-Hard. We then mathe-
matically formulate our problem by identifying the input,
output, constraints, and objective functions as a multi-objective
optimization problem. Finally, we solve this problem through
a MA. Notations are provided in Table II.

A. VCP Problem Definition

In this problem, we have a set of services having differ-
ent requirements and a set of available vehicles that would
potentially host a micro-service or more. The aim is to find

the best distribution of these services on the set of available
vehicles taking into account the resources available on them,
requirements of services, network stability of the moving
cluster, maintenance of attached micro-services, and proximity
from the user during the serving time (required for low-latency
applications). By reducing our problem to the Bin-Packing
problem [27], we prove that VCP is NP-Hard. The traditional
bin packing problem is described as follows. Suppose we
have a set of objects with different volumes that need to be
packed inside a finite number of bins of different capacities
and volumes. The aim is to try maximizing the total objects
packed in each bin and to minimize the number of used bins.
This problem can be mapped to our problem as follows. Each
bin is a vehicle having resources capacity, and the objects are
services to assign for vehicles. Our objective is to maximize
the number of pushed services while minimizing the number
of active fog/vehicles, in addition to other objective functions.
Thus our problem is NP-hard.

B. VCP Problem Formulation

We aim to optimize the number of pushed services, the num-
ber of serving vehicles, stability of the cluster, and attachment
of related micro-services under similar vehicular conditions.

1) Input Data: As input, we have a set of services S having
different requirements, a set of vehicles V with different
offerings, and the mobility parameters to locate the user U.

• Service: The set of services S, each with a service id, are
represented as a 2D matrix S ∈ R

(n∗nid)∗4 having four
attributes. A row in the matrix represents a microservice
requirements as Si

id = [Sc
i
id, Sm

i
id, Sd

i
id, Stid].

• Vehicle: The set of vehicles V is represented as a matrix
V ∈ R

n∗7 that illustrates seven attributes of a vehicle.
Each vehicle is described as follows:
Vj = [Vpj , Vtj , Vsj , Vcj , Vmj , Vdj , Voj ].

• User: A user U is represented as an array of four items
as follows: U = [Us, Ut, Up, Ud].

2) Output Data: The optimization solution aims to map
each requested service to a vehicle node in its cluster. The
output is a binary matrix Kij of size (n × nid) × m where
Kij ∈ 0, 1. Kij = 1 means that service Si is hosted on vehicle
Vj . Moreover, an offer message is constructed by Kij and
represents the serving time Ct of the cluster for each service,
as well as the predicted end distance Cd from the user. In order
to simplify the computation of Ct and Cd, we assume that vs

is a good representation of the vehicle movement, and that no
recovery technique is used in case j leaves its cluster. Ct and
Cd are calculated as follows:

• Cluster Serving Time: We write it as Ct, and is
calculated as follows:

Ct = min(Vaj ) ∀j|Lj = 1 and j ∈ {1, . . . , m} (2)

In (2), Vaj is calculated as the minimum between the time
for j to reach its destination Vtj , or the time to go out of
range of its orchestrator V Oj .

• Cluster Distance From User: We write it as Cd. In order
to compute Cd, we use Ct and V Osj . We also use the
geographical coordinates of the vehicles (V Op and Up)
as well as the degree indicating the direction of travel.
The end position of the orchestrator and user specifies the
distance separating them Cd. The initial distance between
orchestrator and user is also calculated using their inital
positions.
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Ct and The initial and predicted end Cd are sent in the offer
message. During the offer acceptance decision, the user takes
into consideration the cluster time availability and proximity
to the cluster in case the application is time sensitive.

3) Constraints: In this subsection, we present the different
constraints that make a solution feasible. These constraints
apply on services that are placed in the cluster.

Resources Limit: The total CPU, Memory, and Disk
resources required by the hosted service on a vehicle should
be less than its available resources. This constraint can be
formulated as follows:

n∑

id=1

nid∑

i=1

Sc
i
id × Kij ≤ Vcj (3)

n∑

id=1

nid∑

i=1

Sm
i
id × Kij ≤ Vmj (4)

n∑

id=1

nid∑

i=1

Sd
i
id × Kij ≤ Vdj (5)

∀j ∈ m, i.e., for all available hosts Vj

Minimum Cluster Serving Time: To guarantee that the
cluster can serve the user for a reasonable time, we set a time
threshold to be considered before sending an offer message to
the user as follows:

Ct ≥ Stid ∀id ∈ n (6)

All Coupled Micro-Services To Be Hosted: Micro-services
should be coupled together to keep them connected in the same
cluster and to avoid service downtime and delay issues. If all
the micro-services composing service requirements cannot be
met by a vehicular cluster, any micro-service of this service
must not be pushed to the cluster. This constraint is formulated
as follows:

m∑

j=1

nid∑

i=id

Kij = nid ∀id ∈ n (7)

Equation (7) implies that the number of micro-services of Sid

placed in the cluster should be equal to the total number of
micro-services of Sid.

Distance Threshold To User: In case a low-latency appli-
cation requires the fog to be hosted near the user to avoid
networking delay, VCP ensures that the distance between the
cluster and the user does not exceed a certain value Ud already
set based on the application need. This cluster-user distance
constraint can be formulated as:

Cd ≤ Ud (8)

Weights Summation: Each objective function is multiplied
by a weight associated with it. All the weights should add
up to one. The purpose of these weights is to have a tradeoff
in terms of the importance of each objective function. For
example, to push as many services as possible no matter what
the conditions are, we should set Wf3 to a value greater than
all other weights. In this case, the evaluation of f3 is affecting
the sum of the optimization functions more than all other
objective functions. It is expressed as follows:

Wf1 + Wf2 + Wf3 + Wf4 = 1 (9)

4) Objective Functions: In this subsection, we present four
contradicting objective for taking the VCP decision.

• Maximize Cluster Lifetime: Maximizing the cluster
lifetime leads to maximizing the user serving time. This
objective function aims to maximize the time availability
of the kubeadm cluster by selecting fog vehicles that can
keep connected to the master node for a longer period.
We formulate this function by maximizing the minimum
time it takes for one fog to go out of the cluster as follows:

F1 = max(Ct × Wf1) (10)

• Maximize Micro-Services Connection Time: An alive
connection between all micro-services of a service is
important to ensure service availability. One micro-
service does not function without the other. Therefore,
in this function, our objective is to host micro-services in
similar mobile conditions on different vehicles if possible.
We make sure that a vehicle hosting micro-services of a
service are approximately at the same distance from each
other at different time steps as follows:

F2 = min(
n∑

id=1

nid∑

i=id

m∑

j=1

nid∑

i′=id

m∑

j′=1

((||V t
pj

− V t
pj′ | − |V t′

pj

−V t′
pj′ ||) × Kij × Ki′j′) × Wf2) | i �= i�and j �=j�

(11)

where V t
lj

− V t
lj′

indicates the distance separating Vj

and Vj′ hosting service Sid at time t. In this function,
Sid is selected in the first summation. The second and
third summations retrieve the microservices of a service
and their hosts. The host position of a micro-service is
compared with all other hosts running the other parts of
that service using the last two summations. The cycle
repeats for the rest of services and hosts. This function
minimizes the difference of distances between related
hosts at different time steps (t, t�, t�� . . .) to ensure that
vehicles, hosting connected micro-services, stay close
while moving.

• Maximize Number of Pushed Services: The aim is to
maximize the number of pushed services the vehicular
fog cluster as follows:

F3 = max((
m∑

j=1

n∑

id=1

nid∑

i=id

Kij) × Wf3) (12)

By maximizing the number of pushed services, we guar-
antee that all users’ requests for services are satisfied and
services are deployed on vehicular fogs. F3 in (12) sums
the number of placed micro-services of services on all
vehicles.

• Minimize Number of Active Vehicles: The aim of this
objective function is to minimize the number of active
vehicles in order to minimize the monitoring load on the
orchestrator, and make it easier to recover from workers
leaving the cluster. It is expressed as:

F4 = min((
m∑

j=1

Lj) × Wf4) (13)

Therefore, our multi-objective optimization problem is to
optimize F, which includes optimizing the cluster lifetime,
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the micro-services connection time, the number of pushed
services, and the number of active vehicles:

F = [F1, F2, F3, F4] (14)

These objectives are subject to the constraints of resources
limits, minimum cluster serving time, and ensuring that either
all micro-services of a service are pushed or none.

C. Memetic Algorithm to Solve VCP

It is important to get an efficient set of solutions for the
container placement problem in a short time. The MA is a
suitable solution for such problems [28]. It is built on top of the
genetic algorithms. However, in addition to the optimization
operators, it has a local optimization (local search) algorithm
that can reach efficient solutions in early generations [29].
The MA proposed by the authors in [25] is amended to solve
our optimization problem; Algorithm 1 illustrates the updated
algorithm.

Algorithm 1 Multi-Objective Memetic Algorithm
Data: Set of containers
Result: Pareto set approximation pknown

1: Check if the problem has a solution
2: Initialize set of solutions P0

3: P �
0 = Repair infeasible solutions ofP0

4: P ��
0 = Apply local search to solutions of P �

0

5: Update set of non-dominated solutions pknown from P �
0

6: t = 0
7: Pt = P ��

0

8: While (Stopping criterion is not met), do
9: Qt = Selection of solutions from Pt ∪ pknown

10: Qt’ = Crossover and mutation of solutions of Qt

11: Qt” = Repair infeasible solutions of Qt’
12: Qt”’ = Apply local search to solutions of Qt”
13: Increment t
14: Update set of non-dominated solutions pknown

from Qt”’
15: Pt = fitness selection from Pt ∪ Qt”’
16: End while
17: Return Pareto set approximation pknown

First, the algorithm checks that the problem has at least
a feasible solution. If yes, a random set of solutions P0

is initialized by randomly assigning images of services to
available cars. In step 3, the set of available solutions in P0 is
repaired to avoid violations of the constraints. These violations
are repaired in three ways: (1) Moving containers to other
available vehicles in the cluster, (2) adding available vehicles
to the list of running ones and moving Docker containers to
them, and (3) removing containers from the list of services to
be pushed. Step 4 of the MA is to apply a probabilistic local
search method to optimize feasible solutions. If the probability
is less than 0.5, the number of pushed services is maximized.
On the other hand, if the probability > 0.5, the number of
available volunteers is minimized. This way, the agent is trying
to converge to an efficient solution at early the stages. Then
the Pareto set approximation is generated at step 5. After
the initialization of step 6, selection, crossover, and mutation
operators are applied, infeasible solutions are repaired, opti-
mization of solutions is done using probabilistic local search,

iteration counter is incremented, and finally, the Pareto set
is updated if any improvements happened. After that, a new
population is selected. This process keeps on iterating until
the algorithm meets the stopping criteria (e.g., the maximum
number of iterations is reached). Finally, the fittest set of the
solution pknown is returned. In this MA, we use the binary
tournament for selecting individuals from the population to
apply crossover and mutation on them. The crossover operator
used is the single point cross-cut. The mutation used is the bit
string, where each gene is mutated with probability 1/n where
n is the number of services. This prevents stagnation in a local
optimum.

The complexity of this algorithm is divided into four parts,
as discussed in [30]: The generation of M chromosomes,
crossover, mutation, and local search complexity time. Let M
and N be the number of chromosomes and the number of
nodes, respectively. The MA starts off using O(M ×(n−1)×
log(n − 1)) time units to generate the random population.
Also, let pc and pm be the probability of the mutation and
crossover, respectively. The number of offsprings generated
by the crossover uses O(N × pc × [M × (N + 1)]), while the
ones created by the mutation consumes O(pm×[M×(N+1)])
of time units. The local search algorithm consumes O(n).
Therefore the combined time complexity of the MA is shown
in equation 15 (given pm = 1/2).

O((M × (n − 1) × log(n − 1))+(N × pc×[M × (N + 1)])
+(1/2 × [M × (N + 1)] + N)) (15)

It is important to note that in [25], based on which we built
our algorithm, the MA was proven to reach the exact optimal
solution when the input size is small, and a near optimal
solution when the input is large.

V. CLUSTER RECOVERY ALGORITHM

Vehicles in a Kubeadm cluster can host one service/micro-
service or more. If a serving fog or master becomes undecided
or isolated, the user loses connection with the service. Hence
the service can either be requested from an RSU or from the
cloud. To avoid such scenarios, we propose a Kubeadm cluster
recovery algorithm. In this section, we described the proposed
Kubeadm fog and master recovery algorithms.

A. Kubeadm Fog Recovery

If a fog vehicle is about to leave the cluster, or a connection
is lost, the master node runs Algorithm 2 to recover from any
potential failures. The master tries to check if another fog in its
cluster can host the service of the leaving vehicle. In case there
are no resources available on the workers, the master uses its
resources to host the service, if possible. If not, the master asks
the RSU or BS for temporary resources to host the missing
service and maintain its availability. As a last resort, the RSU
examines the available clusters it has and sends additional offer
messages to the user for acceptance. Once the user accepts the
offer of the new cluster, the missing service(s) is/are migrated
to the new cluster.

B. Kubeadm Master Recovery

In Kubeadm, if the master node leaves its cluster, the cluster
goes down [12]. The RSU monitors the behavior of all the
underlying master nodes. If a potential leave for a master
node is detected, the RSU calls Algorithm 3 to recover from
cluster failures before occurring. The algorithm checks first if
a secondary master node is running to replace the primary.
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Algorithm 2 Kubeadm Fog Recovery Algorithm
1: procedure: Fog Recovery
2: The master Searches for another fog availability by
3: following these checks:
4: Run VCP to check if another fog node can host
5: the service
6: Check if the master node can host the service
7: Check if another cluster or a single vehicle can
8: temporally host the service by contacting the

RSU or BS
9: if checks fail, then:

10: The RSU prepares a backup cluster: generate
11: new offer messages and ask for the user

acceptance.
12: end procedure

Algorithm 3 Kubeadm Master Recovery Algorithm
Procedure: Master Recovery

1: The RSU searches for another master availability by
2: following these checks:
3: Check for a running secondary master
4: Run master election and Check for a fog ability
5: to transition for a master state
6: if checks fail, then:

The RSU prepares a backup cluster: generate new
offer messages andask for the user acceptance.

7: end procedure

If no secondary is found, the RSU asks for the election
algorithm to run locally and elect a new master node in case
available resources are found. As a last resort, the RSU collects
offers from other available Kubeadm clusters. Once an offer
is accepted from the user side, the services are migrated to
the new backup cluster, which can replace the original one in
case of failures.

VI. SIMULATIONS AND EXPERIMENTAL RESULTS

In this section, we provide experiments of four scenarios
illustrating the limitations of existing vehicular fog approaches
and presenting how our proposed scheme outperforms these
solutions. We also provoke a worst-case scenario where the
vehicular cluster fails to maintain a connection. Therefore,
the importance of adapting our recovery method is also
explored.

A. Combined Testing Scenarios Showing
Our Approach Advantages

1) Experiment Setup: In our experiments, we use the
Mininet-Wifi simulator as a base environment. Mininet-Wifi
offers the ability to run a full network on one machine using
wireless technology for vehicular connections [31]. This is
done using the notion of processes as hosts. Wireshark is
used to track the processes interactions during the simulation.
Because of the need to represent VANETs and simulate
them in real life, we make use of the integration between
Mininet-Wifi and SUMO simulator to build near real-life
scenarios of moving vehicles. Sumo is a road traffic simulator
programmed to control and display the movement of vehicles
on any chosen map [32].

Cellular Networks and RSUs are represented in SUMO
as well as the moving vehicles at predefined speeds and
routes to follow. We simulate the vehicle’s behavior using a
container. Automated python scripts using Mininet-Wifi library
are used to build experiments discussed in the following
Section. A ping web service is built using the Flask framework
[33]. In this service, the hosting device listens on a certain
port waiting for the user’s request. The fog then replies with
a message. The aim of this service is to measure the service
availability and networking delays between users and serving
vehicles. The networking delay is a good measure to show
the ability of our approach to hosting services on the fly on
fogs. We build a VM that uses Ubuntu minimal image of size
520MB that runs our web service, in addition to a Docker
image using Ubuntu minimal of size 30MB running the same
service. The internet speed during the simulation is on average
50Mb/s.

The experiment conducted is a combination of four sub
experiments aiming to show how our approach overcomes the
existing fog limitations. The first experiment aims to show
the improvement achieved by installing containerized micro-
services vs. VMs. The second part presents the importance
of hosting services on vehicles vs. RSUs by avoiding the
handover delays caused by SDNs. The third fold proves that
our approach overcomes the RSU availability issue. The last
part of our experiment implies the need for a recovery algo-
rithm to handle any fog technical failures or non-availability.
Therefore, we set our testing environment as follows: Four
vehicles, with 100m wireless coverage are installed on the
road following the same path. Also, five RSUs are arranged
in sequence on that road. All RSUs are aligned in a way
that covers all parts of the road, except a gap of 300m
between RSU3 and RSU4. All vehicles start moving at a
speed of 10 m/s. V1, V2, V3, and V4 start moving at time
5s, 10s, 5s, and 0s, respectively, hence creating a distance
of 50m between V2, V3, and V4. V1 is the user who starts
requesting the web service after 5s of the simulation time.
V3 is elected as the master node of the cluster V2, V3, and
V4, where the Kubeadm cluster is initialized. At 5s, the RSU
starts pulling the VM containing the flask service. At the
same time, V4 starts pulling the same service from Docker
Hub. When V1 joins the range of RSU2, a computation delay
of 100ms is manually provoked on the SDN controller in order
to simulate the RSU handover issue. After 195s, V4 speed
is doubled to reach 20m/s. This behavior was provoked to
simulate speed randomness. V4 leaves the cluster (range of
the master) at 200s. In this part of the experiment, we do not
use any recovery algorithm. The response time of each ping
request sent to RSUs vs. V3 is recorded.

2) Experimental Results: The results in Fig. 2 are separated
into four parts, as mentioned in the Experiment Setup. The
x-axis in the graph corresponds to the simulation time in
seconds, vs. the response time at different stages or time of
the simulation on the y-axis.

During the first part of our experiment, a VM instance is
being downloaded on the vehicle. It takes around 45s for
the VM to get downloaded. During this time, all vehicle
requests are served by the cloud. In conclusion, such time for
a simple service cannot be tolerated by vehicular applications,
especially when services are hosted on RSUs, where routes
should be updated to reach the service or a new VM has to
be pushed again. In contrast, the container image took 5s to
download and boot. Therefore, more than 90% improvement
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Fig. 2. Approach Advantage in Combined Scenarios Compared to [7], [15]
- No Recovery.

in image size and booting time is achieved when using
containerization technology for pulling and running services.
RSUs limitations such as handover and range of coverage,

studied in parts two and three, are solved in our approach
because of the ability to host services on vehicles after
clustering them and electing the right orchestrator. Based on
[7], the controller re-computes the routing table whenever the
vehicle moves to a new RSU. Because of the networking and
computational delays added to the SDN during our experiment,
we can observe the jump of response time in the second part
of Fig. 2, whereas our approach uses dynamic routes updates
between vehicles hosting services through the orchestrator or
the upper level in our architecture like the RSUs. Therefore,
we are able to maintain low response time in case of change in
the network topology. Thereafter, because services are being
hosted on vehicles and orchestrator is reachable through the
cellular technology or 802.11p, the service is made available
throughout the cluster lifetime, as shown in the third part of
Fig. 2. On the other hand, counting on static fogs (RSUs
or anchor routers) to reach services [7], [15] is not feasible
because of their limited range of coverage. This is illustrated
in the third part of Fig. 2 representing the cloud of RSUs.

After 195s of running the simulation, V4 doubles its speed
to 20m/s causing it to leave the cluster at around 200s (part 4).
Because V4 is the only running fog in V3’s cluster, the service
requested by V1 becomes unavailable. In this case, thereafter
requesting the service from the cloud. In [7]’s approach,
the service is available on RSU1 and reachable through RSU5.

B. Recovery Algorithm

In the second part of this experiment, the recovery algorithm
is installed to run on V3 to avoid any cluster connectivity or
physical failures. We reproduce the above experiment after
adding the fog recovery solution. The results are shown
in Fig. 3 (Recovery part). V3 is now able to push the service
to V2 before the current running fog (V4) leaves the cluster.
Moreover, the master recovery algorithm can also be used
when connection breaks occur with the orchestrator.

C. Comparative Study Over Existing Approaches

In the combined experiments, our approach is compared to
the RSU cloud approach [7] and FMC [15]; however, this
comparison applies to all approaches trying to serve vehicular
applications using RSUs and VMs. In table III, we summarize
all the advantages of our approach compared to existing ones
such as the cloud of RSUs. Adapting the containerization
technique allowed us to download and update services faster.

Fig. 3. Approach Advantage in Combined Scenarios - Recovery.

TABLE III

PERFORMANCE COMPARISON BETWEEN OUR APPROACH VS
CLOUD OF RSUS [7] AND FMC [15]

Our approach does not consider the use of SDNs because
of the timely low-cost reporting between master nodes and
RSUs. In addition, the use of our proposed hybrid networking
architecture makes it possible for users and vehicular fogs to
keep connected. The recovery algorithm plays a vital role here
by avoiding any potential clusters failures.

VII. VCP EXPERIMENTS

In the previous experiments, the best selection of volunteers
and optimal distribution of services on vehicles are taken
by default. In the following experiments, we build test cases
with three scenarios to show the importance of our objective
functions and their effect in taking the selection and placement
decision of services. The first experiment illustrates the impor-
tance of keeping micro-services connected because loosing
one micro-service before the other leads to the non-availability
of the main service. A decision can be taken with the best
distribution of connected micro-services; however, services
can be redistributed in a way that maximizes the number
of pushes while maintaining the same fitness value of the
micro-services connectivity or tolerating a small fitness loss.
In the second experiment, we show the ability of the VCP to
maximize the number of pushed services. While maintaining
these two objectives, the service will not be available for a long
time if the cluster is about to reach its time availability limit.
Therefore, we study the importance of maximizing cluster
lifetime in the third experiment.

In all of the mentioned experiments, we ran the MA ten
times while considering individuals of size 100. We performed
several experiments in order to assign stopping criteria based
on a predefined number of iterations, which resulted in adopt-
ing the 1000 iterations. We then take the best solution out of
the 10 runs as the output of our Memetic solution. We discuss
the MA output and compare the results to a search algorithm
to place the services. This is done to show the ability of our
VCP to maintain an equilibrium between all of the objective
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TABLE IV

VEHICLES DATASET COMBINING MOBISIM AND GOOGLE
CLUSTER TRACE 2011-2

TABLE V

SERVICES DATASET

TABLE VI

SCENARIOS

functions in one decision. Furthermore, we consider equal
weights for each objective during the experiments.

To develop our scenarios, we use two well-known datasets,
the Google trace 2011 dataset [34], and another one generated
by Mobisim tool [35]. Google cluster trace dataset contains
data about micro-services’ resources requirements in terms of
CPU, memory, and disk, as well as data about the available
cluster’s resources. In our case, each node in this cluster is
a vehicle. In their data, all nodes have identical specs where
the given values are normalized. The mobility conditions of
our scenarios are selected from a generated Mobisim dataset.
In Mobisim, we can generate a behavior of real vehicles with
random directions and speeds. From this data, we selected the
average speed and distance crossed by a group of vehicles. The
services and vehicles datasets are shown in tables IV and V.
Table VI shows the combination of available vehicles and
services used to build our test cases. The testing environment
is created using Mininet-Wifi and SUMO simulators. Because
vehicles are changing their speed in Mobisim, small fluctua-
tions in the response time are observed in experiments results.

The starting location of the user is (40.740, −73.994), who
departs at time 4 after the simulation starts. The user mobility
is described in each of the below experiments setup.

A. Experiment 1: Importance of Keeping
Micro-Services Connected

All micro-services must reach each other to keep the service
available. In this experiment, we show the ability of our
VCP algorithm to keep the microservices connected for the
maximum time possible. We compare the performance of
the VCP algorithm to a search algorithm that looks into the
available vehicles and finds the first vehicle close to the user
and capable of hosting the service.

1) Experiment Setup: Scenario 1 is used in this experiment,
where push S1, S2, S3, and S4 are to be placed on vehicles

Fig. 4. Maintain Micro-Services Connection Using VCP.

V1, V2, V3, and V4. The vehicle has a network coverage
range of 50m, the user is moving with V1 at almost the
same average speed during the first 2s and then connects to
it through the RSU. We implemented the micro-services in a
way that each one pings the other whenever the user sends a
request to V1 (selected orchestrator). If all services can reach
each other, the user receives its response. The response time is
recorded in the graph of Fig. 4. Whenever a micro-service is
not reachable, we represent the response time to be -1 in the
graph. This is where the user does not receive any response
from V1. We pass scenario one as input to our VCP algorithm,
and we compare its results to the ones generated by the simple
search algorithm. 5ms of networking delay is added on the
link between the user and each of V4 and V5. Concurrent
requests are sent to the serving vehicles neglecting the time of
initializing the cluster and downloading the service. The x-axis
in Fig. 4 represents the request number, whereas the y-axis
represents the response time of the request sent by the user to
test the service availability.

2) Experimental Results: The VCP assigns S1, S2 to V5 and
S3, S4 to V4. On the other hand, the search algorithm output
for scenario 1 is to assign S1, S2 to V1 and S3, S4 to
V3. In the simple search case, the user is being served until
sending the 25th request where he stops receiving a response.
At this time, the response drops to -1 and the service becomes
unavailable. This is because V3 is moving at a faster average
speed and leaves V1 range after around 3s from the simulation
starting time. A jump in the response time for the search
algorithm is shown during the 17th request. This is because the
user connects to V1 through RSU after a certain time rather
than a direct connection (the speed of the user is different
than the cluster’s speed). VCP tries to push micro-services to
vehicles in a way that maximizes their time connectivity to
their orchestrators. Following the VCP decision, the service
is made available for the user all the time. We can notice
that VCP is causing more delays when the service is available
because V4 is far from the user and connected through an
RSU from the beginning.

B. Experiment 2: Importance of Maximizing
the Number of Pushed Services

We show in this experiment the ability of our VCP to push
the maximum number of services on available cars to enhance
the QoS of all requesting users.

1) Experiment Setup: In this experiment, we use scenario
two as a testing environment and let the user move next to V1.
To show the importance of this objective function, we com-
pare the results of our VCP to the search algorithm. Using
Mininet-Wifi integration with SUMO, we can simulate the
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Fig. 5. Maximize Number of Pushed Services using VCP.

behavior of both criteria. A networking delay of 5ms is added
to the link between the user and all vehicles. A comparison of
the response time for each criteria is shown in the two graphs
of Fig. 5, where each HTTP request sent to services hosted
on selected vehicles is recorded.

2) Experimental Results: The VCP output shows that
micro-services S5 and S6 together should be placed on V6 and
S7 on V4; however, the search algorithm output for scenario
2 is to assign S5 and S6 to V4 and S7 to V6. Following the
VCP decision, we can notice that both services (S5/S6 and S7)
are available to the user all the time. The services response
time is somewhat high because the user is connected to the
fogs through RSUs. For the search algorithm output, S5 and
S6 services are available, but S7 is not. This is because
when S5 and S6 are pushed to V4, the remaining resources
on V4 and V6 are not enough to meet the requirements of
S7. Therefore, S7 cannot be hosted anymore on V6 because
S7 resources requirements are more than V6 capacity. Hosting
S5/S6 on V6 allows us to utilize almost its full available
resources, and allows S7 to be hosted on V4. V7 and V8 are
not considered in the search algorithm or VCP because they
are further away from the user than V4 and V6. Based on the
experiment’s results, we explored that our Memetic solution
is capable of maximizing the number of pushed services.

C. Experiment 3: Importance of Increasing
the Cluster Lifetime

Considering the VCP decision without the objective of
increasing the cluster lifetime, services can be placed on
nearby vehicles having enough resources, which results in the
least delay possible. However, if services are being pushed to
clusters that do not have a stable connection, or where the
orchestrator/worker nodes will soon reach their destinations
and stop serving, this leads to shorter serving time. In this
case, the decision to select serving vehicles is greatly affected
by their serving time. Therefore, aim is to maximize the cluster

Fig. 6. Maximize Cluster Availability using VCP.

serving time. Through this experiment, we show the ability of
VCP to achieve this task.

1) Experiment Setup: We use Scenario 3 for this experi-
ment. Services are ready and running on the fogs before the
vehicles start moving. We also let V2 leave the cluster after 54s
from its starting time. The user drives next to V2 at the same
speed, and following the same direction. A delay of 5ms is
added between the user and V4. We assume that S7 is already
running on both vehicles. The response time of user’s requests
sent to S7 either hosted by V2 or V4 is shown in Fig. 6.

2) Experimental Results: Based on the VCP output,
the VCP decides to push S7 to V4. Differently, the search
algorithm for scenario 3 assigns S7 to V2. As shown in the
results of Fig. 6 and after the 7th request, S7 is no longer
available on V2 because it reached its destination and stopped
serving. We can see that S7 is available on V4 throughout the
simulation time because V4 can serve for 40s with enough
resources. Therefore, VCP’s decision shows the ability to
maximize the cluster availability. Depending on the available
resources, user’s requirements, and services importance, VCP
tries to provide an effective selection and distribution of
services based on multiple contradicting objectives.

VIII. CONCLUSION

In this paper, we explored that the use of RSUs to support
real-time vehicular applications is not convenient in real-life
scenarios. Moreover, On-Board Units are still constrained by
the availability of their resources. Therefore, one or two OBUs
are not enough to handle the processing of the vast amount of
data generated by vehicles. To the best of our knowledge, there
is no work in the literature capable of hosting services on the
vehicle. In case vehicles are used as fog devices, they should
keep an alive connection with the user to provide longtime
support. Another problem arises in this context, which is
finding the best fit of micro-services on available vehicles in
a way that maximizes the vehicles serving time and maintains
its reachability. In this context, we proposed the Vehicular-
OBUs-As-On-Demand-Fogs solution capable of providing an
on-demand fog and service placement on vehicles, considering
a hybrid network architecture to maintain the connection
between the requesting vehicle and vehicular fog cluster.
Our solution embeds an adapted master election, recovery
algorithm, and evolutionary MA for efficient service placement
on vehicular fogs. Our experiments showed more than 90%
improvement in the response time in cases such as SDN
delay, RSU limited coverage, and RSU handover. In addition,
the importance of our VCP solution is observed compared
to a search algorithm for placing containers on vehicular fog
clusters. As future work, the recovery algorithm should be

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on June 25,2021 at 06:28:33 UTC from IEEE Xplore.  Restrictions apply. 



790 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 28, NO. 2, APRIL 2020

improved by introducing a reinforcement learning approach
to identify the proper time to restore the cluster state. We can
also benefit from our approach by introducing a security
model for securing vehicular networks. This is a susceptible
area because any attacks on the network can lead to data
and decisions changes. On the other hand, upcoming cellular
network technologies like 5G are very promising towards
the support of real-time vehicular applications. Thus, our
architecture and methodology can be adapted and enhanced
based on the advancement of networking technologies.
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