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Abstract—Several studies leverage fog computing as a solu-
tion to overcome cloud delays, including computation, network,
and data storage. Along with the increase in demands for
computing resources in fog infrastructures, heterogeneous fog
devices are used towards forming highly available clusters.
Existing approaches support the use of heterogeneous fogs and
enable dynamic updates and management of services through
containerization and orchestration technologies. However, none
of the existing works proposed a proactive solution to horizontally
scale these resources based on the IoT workload fluctuations, in
addition to deciding on proper placement of the scaled instances
on fogs with minimal cost on the fly. An effective scaling results
in improving the response time and avoid service instability
on fog devices. Therefore, we propose in this work FScaler, a
reinforcement learning agent that horizontally scales container’s
instances after studying user’s demands, and schedules the
placement of newly created instances based on defined cost
functions after studying the change in resources availability. The
environment of FScaler is modeled as an MDP to be solved by
any RL algorithm. For this work, we study the efficiency of
our MDP formulation by solving the problem using SARSA.
Promising results are shown through testing using a real-life
dataset presenting the variation of user’s demands of a particular
service and the change in resource availability over time.

Index Terms—Fog Computing, Horizontal Scaling, Service
Placement, Reinforcement Learning, Container, Kubernetes

I. INTRODUCTION

Fog computing is utilized to work out the limitations of

distant clouds affecting IoT devices in terms of networking,

computation, and data storage. Fog can be any computing

device located close to the user. The creation of these fogs

can be static [1] or dynamic [2], depending on the envi-

ronment it is serving. Furthermore, virtual machines (VM)

were used to facilitate service hosting as a flexible solution

supporting any operating system and coping with the rise of

fog computing. On the other hand, the increase in the number

of IoT devices drain fog resources with service requests and

raise the need for dynamically placing and updating fog

services. Therefore, researchers deviate from using VMs to

using containers to meet these demands [3]. Containers are

proven to be more lightweight compared to VMs because they

use the device’s operating system rather than a new copy of

it. More importantly, it is also more flexible to manage a large

number of containers and resources in clusters of fogs using

orchestrators. Kubernetes [4] is an example of a container

orchestration tool capable of (1) monitoring the health of

containers, (2) load balancing requests on multiple instances

to avoid service overload and instability, and (3) managing the

cluster resources.

To fulfill the increasing demands and requests for services

hosted on fog devices, dynamic on-demand horizontal scaling

of containers resources is imperative. Horizontal scaling is the

act of adding and/or removing instances of containers to meet

an acceptable response rate for users, or to clean resources

to be consumed by other applications. A challenging factor in

such decisions is the fact that fog resources’ are heterogeneous

and can change over time depending on the demands of other

applications. This necessitates an automated approach that

predicts the demand of groups of users to act proactively

and scale the required number of instances. This approach

must also decide upon the new instances placements inside

the orchestrated fog clusters based on the changing available

resources in order not to affect other running applications.

Meanwhile, Reinforcement Learning (RL), a category of ma-

chine learning, utilizes intelligent agents to build knowledge,

take actions, and adapt to the changes in its environment

through a load balance between exploration and exploitation.

The agent aims to maximize a certain reward or minimize a

given cost. This knowledge can either be built from scratch

and is called model-free or uses a model of the environ-

ment to learn faster, which is called model-based. The agent

environment is formulated as a Markov Decision Process

(MDP) to be solved using RL algorithms. The model-free

approach can be used to learn from the environment from

scratch because it is hard to model the randomly changing

service demands over time. RL is proven to excel in the

areas of robotics, studying behaviors, scheduling, and many

more [5]. Motivated by the advancement in RL, we propose

in this paper Fscaler (Fog scaler), a model-free RL to solve

our scaling problem taking into account the aforementioned

challenges. Fscaler generates four combined decisions serving

the horizontal resource scaling of containers in fog clusters

based on defined cost functions. These four decisions are: (1)

the number of containers to add, (2) the number of containers

to remove, (3) an efficient placement of the service instances

on fogs considering contradicting objectives and available

resources, and (4) selection of fogs to stop and remove running

instances that are not useful or can block other applications.

Through a series of experiments, we obtain promising results
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showing the correctness and efficiency of our proposed MDP

formulation after solving it using a model-free RL algorithm

called SARSA. To the best of our knowledge, we are the first

to propose the horizontal scaling of containers in fog clusters

that is capable of making such decisions. The contributions of

this paper are:

• A novel architecture to account for dynamic resource

scaling of containers through integrating FScaler, an RL

agent, in Kubernetes fog clusters.

• A novel MDP formulation of the scaling problem, which

can be later solved by various RL agents depending on

the fog cluster and application scale.

• Proposing the use of SARSA to build the FScaler agent,

which is proven to reach optimal policy through a series

of realistic experiments.

The rest of this paper is organized as follows. The related

work is depicted in Section II. In Section III, we illustrate

the integration of Fscaler in Kubernetes. In Section IV, we

formulate the horizontal scaling and placement problems as

MDP. In Section V, we present the SARSA algorithm to build

FScaler. In Section VI, we present a series of experiments

using real-world datasets of servers loads and capacities. We

finally conclude with future directions in Section VII.

II. RELATED WORK

In this section, we discuss different related proposals con-

sidering the problem of resource scaling in fog environments.

A. Resource Scaling and Placement in Fog Clusters

Authors in [6] studied the current trends and architectures

of fog computing. In this survey, the authors highlighted the

limitations of such architectures and pointed out the deploy-

ment issue of services in fog environments. The main problem

is the ability to scale fog resources in order to achieve efficient

placement of new services without affecting the running ones.

B. Resource Scaling Using RL

Many approaches used RL to horizontally and vertically

scale resources on the cloud, taking into account the deploy-

ment cost [7]. This is different in the fog computing context,

where containers are used for deployment and scaling, and

placement happens under different conditions such as the

change in resource availability of fogs and their different

locations. Few works considered scaling containers in fog

environment. For instance, Authors in [8] built an MDP for

horizontally and vertically scaling containers resources inside

one fog. This work considers scaling on multiple fogs having

different locations. The limitation of [8] is the use of Linear

Integer Programming to do the placement of newly created

instances on fog devices, which might take time if the input

is large and therefore delays the scaling procedure. On the

other hand, FScaler is able to proactively do the scaling and

placement at once using our Formulation.

C. Studying Behaviors and Scheduling Tasks Using RL

Several approaches have used RL to study users’ behavior in

terms of demands for services. One application where studying

the demands is useful is caching. For instance, authors in [9]

formulated their problem as MDP and used RL to decide on

the files to cache in small base stations deployed in different

locations based on the changes in users demands.

III. PROPOSED ARCHITECTURE

The motivation behind our proposed scheme is to decide

upon efficient scaling of containers resources in fog clusters

in order to handle the demands of users and avoid overloading

containers on fogs, which can result in its failure or instability.

The challenges facing our approach can be summarized as the

randomly changing demands of users, the randomly changing

load of fogs and therefore the availability of resources, de-

ciding on the exact number of containers to be added and/or

removed at a time-step, and finally the proper placement and/or

removal of containers on/from specific fogs.

In order to overcome these challenges, we propose the

Fig. 1: Proposed Architecture

architecture illustrated in Fig. 1. The core of this architecture

is FScaler, an RL agent that is capable of making the scaling

and placement decisions. In short, fog devices receive requests

from users. After serving these requests, the fog sends use-

ful information about its performance and current resources

state. Fscaler, in turn, utilizes this information to advance

its knowledge and take effective actions for releasing and/or

using more resources in its cluster. Fog and worker are used

interchangeably throughout the paper with the same meaning.

Fogs as Kubernetes Workers: The cluster size represents

the number of workers it has. For instance, two workers are

considered in our sample case in Figure 1. Each device’s

resources containing CPU, Memory, and Disk are divided

into three parts. First, resources reserved by other applica-

tions running on the fog (shown in gray). Second, resources

consumed by containers running our application (shown in

pink). The third is the available idle resources that can be

used to add more instances for our application or can be used

by other applications. Noting that containers in the case of

Kubernetes clusters run in the form of pods. Resources utilized

by pods of our application must not be idle for not wasting

the worker resources. Besides, overloading pods can result in

instability of the service and possibly affect its availability.

Therefore, it is relevant to smartly use more of the workers’
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available resources in case needed, while not blocking other

applications, to achieve load-balancing. It is also important to

mention that pods addition or creation does not affect other

instances running the service [4].

Kubernetes Master: Kubernetes master in our architecture is

composed of two entities: The standard kubernetes master and

the FScaler RL agent. These entities couple together to achieve

the desired management and resource scaling of the cluster.

The standard Kubernetes master role is to manage the state

of the cluster by monitoring the performance of pods in every

worker, restarting or creating new copies of failing ones, load

balancing the incoming traffic on pods to avoid overloads,

and scheduling the creation of new pods on available nodes.

We disable the scheduling functionality of the traditional

Kubernetes master and replace it with FScaler for placement

and scheduling of the new instances based on defined cost

functions that better serve the fog computing purpose, and

study the changes in resources available on the workers. As

shown in Figure 1, the Kubernetes master periodically receives

data from its workers to be used by FScaler for learning. These

data represent the response time of requests sent to the user,

the current placement of containers, and the newly available

resources of workers. FScaler is a model-free RL agent that

periodically takes actions and learns by capturing data about

its environment. FScaler interacts with the environment based

on our MDP formulation detailed in the next section.

IV. MODELING FSCALER

MDP is a mathematical framework for modeling sequential

decision making in stochastic environments. An MDP model

is defined by the tuple (S,A,P, C, γ). S is a set of states

that represents all possible states of the environment. A is

the set of all possible actions or decisions to take. P is

the transition probability matrix that represents a probability

distribution over the next states s′ after taking action a ∈ A.

Based on the Markov property, the agent transitions to a new

state independent from all previous states and actions. C is

the cost function evaluated after taking action a on state s
and representing different objectives. γ ∈ [0, 1] is the discount

factor that decides on how much the agent cares about future

rewards or costs for the current state. The ultimate goal is

to obtain an optimal policy π∗ that given state s, it outputs

action π∗(s) that minimizes the given cost. RL is a well-known

technique used to find π.

In the context of our problem, we formulate the horizontal

resource scaling of containers in orchestrated fog clusters as

MDP, taking into consideration the change of users’ demands

and available resources of fogs over time. In our formulation,

we consider scaling for one application. A single pod P of

the application is to be scaled in the cluster, which requires

resources described in terms of CPU, Memory, and Disk. A

pod is represented as P = [PCPU , PMem, PDisk]. Replica-

tions or removal of pod instances can happen on any fog in

the cluster. We denote by H the set of fogs in the cluster,

where Hi = [HiCPU
, HiMem

, HiDisk
]. In our environment, the

performance of fogs is measured by response time U(t) of

users’ requests in ms at time t. Furthermore, we denote by k
a constant in ms to represent the maximum response time users

can tolerate. If U(t) � k, this means enough pods should be

placed in the cluster to handle the excess of requests. In such

a case, our model should intelligently decide on the number

of pods to create in order to utilize the available resources

in the cluster efficiently. On the other hand, if U(t) < k
no additional instances of pods should be created. For this

reason, we denote M(t) the placement vector of size m × 1
of pods on m devices in the cluster. Supposing a Kubernetes

cluster contains three workers (m = 3) and our agent decides

to create five new pods on the cluster, a possible placement

would be: M(t) = (2, 2, 1). We also denote by R(t) the

vector of size m×1 the available resources of each fog in the

cluster at time t, where each element of the vector contains

information about the available CPU, Memory, and Disk.

Available resources can change depending on the reserved

resources by other applications running on the cluster. We

assume that available resources on each node are normalized

with respect to the total resources. A possible R(t) can be

([0.8, 0.6, 0.4], [0.7, 0.5, 0.7], [0.9, 0.4, 0.5]).
An action a(t) in our action space A is a vector of size

m× 1, such that every entry ai(t) ∈ [−Mmaxi
,Mmaxi

] | i ∈
[1,m], and Mmaxi

is the maximum number of placements on

worker i. Mmaxi is calculated using (1):

Mmaxi
= min(�HiCPU

PCPU
�, �HiMem

PMem
�, �HiDisk

PDisk
�) (1)

The action space is the set of all possible actions, taking into

account that some actions will not be feasible based on the

availability of resources for each worker/fog node. Therefore

a single action combines four decisions discussed previously:

number of new pods to create or remove, and the placement

or removal of pods from worker nodes.

We denote by s(t) ∈ S a state in our state space, such

that s(t) = (U(t),M(t), R(t)). Fscaler receives an update of

the environment state periodically. Following Fig. 2, suppose

that Fscaler receives information about state s(t− 1), Fscaler

then takes a scaling and placement action a(t) at time t to be

performed on the environment. M(t) is then calculated based

on the previous placement. Workers then store information

about the response time experienced by the user, as well as

the resources available on each fog during the period t. For

simplicity, U(t) is then calculated based on the average of the

responses, and R(t) is calculated as the average of available

resources over the period of t. The cost Ct is then calculated

for state st−1 and action at knowing Ut,Mt, and Rt. This cost

can also be written as Ct((st−1, at|st)). The next state st is

then formed and forwarded to FScaler to take action at+1. This

cycle repeats infinitely since our environment is continuous.

A. Cost function and placement objectives

The efficiency of our scaling decision in terms of the number

of instances to add is measured by our response cost. The

resource cost is also used to measure the amount of resources

used by the scaled pods, which blocked other applications
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Fig. 2: The Steps to Get Our MDP Quantities Through Time

from running on the machine. This motivates the agent to

intelligently manage the utilization of the resources on each

fog in a way that allows other applications to run by learning

the device’s load over time. Last is our distance cost, which is

dedicated to maintaining the proximity of fogs from requesting

users in terms of distance. In other words, selecting fogs in

the cluster that are furthest from the user is more expensive.

Our first cost C1,t(st) is the response cost measuring the

efficiency of the scaling decision at time t. This cost can be

mathematically formulated as:

C1,t(s(t)) =

⎧
⎪⎨

⎪⎩

[U(t)−k]−[ε×∑m
i=1 Mi(t)]

U(t) , if 0 < ε×∑m
i=1

Mi(t) < U(t)− k

0, otherwise
(2)

where ε is a constant decimal defined depending on the pod’s

performance towards minimizing the response time. Further-

more, [ε × M(t)
T
1] denotes the response time minimized

because of the pods scaling action at. Furthermore, we have

two cases in (2). First is when our placement failed to improve

the response time experienced by the user by k−U(t). In this

case, we take the response time that is experienced by the

user after the placement using [U(t) − k] − [ε × (M(t)
T
1)]

and divide it by Ut for normalization. Otherwise, the cost is

zero because the scaling was able to achieve the best in terms

of response time.

The second cost C2,t(s(t)) is related to the resource con-

sumption, which accounts for the amount of resources used

by pods that blocked other applications from running on each

fog during t. C2,t(s(t)) allows the agent to intelligently study

the changes in resource usage of every fog during t where

the placement of Fscaler already happened. To calculate this

cost, we denote by N(t) a vector of size m× 1, representing

the amount of additional resources needed for each fog to run

other applications after the placement of Fscaler. Furthermore,

Ni(t) is a vector of size three containing the additional

resources used for CPU, Memory, and Disk. Nicpu(t) is

calculated using (3). Similar calculations apply for Nimem
(t)

and Nidisk(t):

Nicpu(t) =

⎧
⎪⎨

⎪⎩

(Mi(t)× Pcpu)−Ri(t), if Mi(t)× Pcpu

> Ricpu(t)

0, otherwise
(3)

Thereafter, C2,t(s(t)) is computed as follows:

C2,t(s(t)) =
∑m

i=1 Nicpu(t) +Nimem
(t) +Nidisk(t)∑m

i=1 Rmaxi
(4)

In (4), Rmaxj
is the maximum resource available at fog j. The

sum of Rmaxj
is used for normalization.

The third cost motivates the main purpose behind fog

computing, which is bringing services closer to users. We

measure this using a distance cost calculated as follows:

C3,t(s(t)) =
∑m

i=1 HiD ×Mi(t)∑m
i=1 HmaxD

×Mi(t)
(5)

In (5), HD is a vector that contains the distances of each host

in the cluster, assuming that the closest fog has HiD = 0. We

take the final number of instances running in the cluster on

each host and multiply it by the host distance. HmaxD
is the

distance furthest from the user and used for normalization.

Therefore, our cost function becomes:

Ct((st−1, at)|Ut,Mt, Rt) = λ1×C1,t+λ2×C2,t+λ3×C3,t

(6)

Where each λ ∈ [0, 1] is a weight multiplied by each

cost function given
∑3

i=1 λi = 1. These weights are tuned

depending on the requirement of the application and the nature

of the cluster to give some cost functions more importance

over the others, where the aim is to minimize Ct

B. Dynamics of the model
In s(t), U(t) and R(t) are calculated after observing the

behavior of users and usage of resources on fog nodes.

Knowing that U(t) and R(t) are stochastic, we assume that

the probability matrix P is unknown, which is practical.

Therefore, Fscaler uses model-free RL algorithms to model the

environment transitions through exploration and exploitation.

C. RL-based Solution
In RL, the agent tries to find the policy π(s) : S → A by

minimizing a cost function, for instance (6). Action a(t + 1)
in our MDP is incurred from the previous action and state,

which tells the agent about the scaling and placement decisions

to be performed. The performance of a(t + 1) is done using

state value function Vπ(s), which is calculated by observing

the rewards during an infinite time horizon. In order to do

a model-free control to improve our policy, the agent should

know P in order to figure out how to act greedily towards this

value function. In our case, we do not know the dynamics of

the environment. An alternative is to use the state-action value

function Q(s, a), where acting greedily is possible through

maximizing or minimizing Q(s, a) of a given state. Our aim in

this paper is to find the optimal policy π∗, which can minimize

Ct. The best π∗ for FScaler is the one that allows the agent to

make optimal scaling and placement decisions in its cluster.

π∗ can be expressed as follows:

π∗(s) = argmin
a

Q∗(s, a) ∀s ∈ S (7)

In the next section, we present the Bellman equation used to

optimize our policy π and introduce the use of SARSA for

solving (7).
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V. SOLUTION FOR SMALL SCALE APPLICATION

Exploration and exploitation are necessary for an agent to

try different possibilities in the action space in order to prop-

erly act greedily. One of the ways to load balance exploration

and exploitation is using ε-greedy policy improvement, which

uses ε as a value that decays over time in order to reduce the

number of explorations as the agent converges to an optimal

policy π∗. In the context of our scaling problem, an RL agent

evaluates his performance in a certain state and action by

calculating a state-action value function Q(s, a). In its simplest

forms, RL agents can store Q(s, a) in a matrix or QTable of

size |S| × |A|. This matrix is usually initialized to zero or to

arbitrary values. SARSA is a model-free on-policy algorithm

used to find the optimal Q-function Q∗. Q-values in SARSA

are updated every time-step using the equation shown in (8)

built using the Bellman equation. In (8), α is the learning rate,

and s′, a′ are the next state and action.

Q(S,A)← Q(S,A)+α(C(S,A′, S′)+γQ(S′, A′)−Q(S,A))
(8)

In order to find the optimal policy based on our MDP, we use

SARSA algorithm. The advantages of using SARSA are: (1)

its ability to learn online from incomplete sequences; (2) its

low variance to the true action value function and (3) it is

proven to reach optimal policy [10]. The SARSA algorithm is

shown in Algorithm 1.

Algorithm 1 FScaler Using SARSA

1: Initialize Q(s, a) = 0, and ∀s ∈ S, a ∈ A randomly

2: for Each episode do
3: Initialize s
4: Select a from s using ε-greedy

5: for Each time-step of episode do
6: Take action a, observe C,S ′

7: Select a′ from s′ using ε-greedy

8: Apply (8) to update Q(s, a)
9: s← s′; a← a′;

10: end for
11: end for

Despite the advantages of SARSA, SARSA for FScaler only

works for small scale applications and clusters because of the

”curse of dimensionality” problem.

VI. NUMERICAL TESTS

In this section, we experiment with FScaler using SARSA

to show its efficiency in scaling and placing containers in fog

clusters, while considering randomly changing users’ demands

and available resources. In order to prove that FScaler is able

to converge to an optimal solution, we build two test cases

with different input sizes, weights, and parameters. We then

plot the cost function showing the performance of FScaler

in each scenario. In order to prove that FScaler is indeed

reaching optimal policy, we plot the response time the user

is experiencing after the scaling and placement decisions, in

addition to the amount of resources blocked on fogs because

Scenario PCPU PMem PDisk m H1D H2D H3D k ε Max
Response

1 0.5 0.4 0.45 2 10 20 - 1 1 7
2 0.26 0.28 0.3 3 10 20 30 1 1 3

TABLE I: Experiments Settings

Scenario γ α λ1 λ2 λ3

1 0.9 0.1 0.4 0.4 0.2
2 0.9 0.1 0.3 0.5 0.2

TABLE II: SARSA Parameters and Cost Weights

of the scaling decision.

Two datasets are used to build our scenarios. The first one

is WS-DREAM dataset [11], which maintains a set of QoS

datasets collected from real web services. From this data, we

built U(t) from the response times in ms of the web services

experienced by the user. The second dataset is Google cluster

Trace 2011-2 [12], which illustrates a real set of available

resources and demands of services that change over time. We

built R(t) from the normalized resources demands of three

hosts from this dataset. In Table I, we show the experiments’

settings of two scenarios. The choice of these parameters is

based on various experiments to show the behavior of FScaler

under different settings. As shown in Table I, the available

CPU changes in both scenarios, as well as the number of hosts

and their distances to study the performance and convergence

of FScaler. In our experiments, we set a limit on the number

of hosts and response time read from both datasets to avoid

the curse of dimensionality problem. In Table II, we show the

different parameters used to tune SARSA and the cost weights.

We ran Algorithm 1 multiple times for each scenario using

the settings of Tables I and II. The results showing the costs

evolution over time for each scenario are depicted in Fig. 3. As

shown in this figure, FScaler is able to converge to a certain

behavior after some time. Scenario 1 has a higher cost because

m is small and Pcpu is large compared to scenario 2. However,

FScaler in Scenario 1 converged faster compared to scenario

2 because the QTable is smaller in terms of states with fewer

hosts. In order to prove that FScaler is reaching the optimal

solutions in both scenarios, we display the results of Fig. 4

following scenario 2. In this scenario, λ1 < λ2, therefore

giving more importance to minimize the resource consumption

cost C2 over the response cost C1. As shown in the graph of

Fig. 4a, the agent was able to minimize the average response

to a value less than 1.6 ms. The best the agent can do is to

Fig. 3: FScaler Performance Using SARSA

1828

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on June 25,2021 at 07:51:01 UTC from IEEE Xplore.  Restrictions apply. 



(a) Response Time (b) Fog 1 - Available Resources

(c) Fog 2 - Available Resources (d) Fog 3 - Available Resources

Fig. 4: Scenario 2: Response Time and Resources Available

N Using FScaler

minimize this response to 0. However, because C2 has higher

importance, FScaler puts more attention to not block the new

demands of fogs. Fig. 4b shows the resources available on fog

one after the placement, where the agent utilizes all available

resources without blocking other applications as the model

converges. A negative value means the agent utilizes more

than the available resources of the fog, which is not the case

after convergence. Furthermore, the distance cost C3 motivates

the agent to use less resources on fogs far from the user. This

is why the agent is not using much resources on fogs 2 and

3. This also explains why the agent did not drop the response

time to 0 in Fig.4a. Therefore, the agent is able to behave

optimally using SARSA in Scenario 2.

VII. CONCLUSION

In this paper, we propose FScaler, an RL agent capable

of scaling and distributing containers based on the demands

of users and available fog resources. We integrated FScaler

in Kubernetes cluster architecture for easier management,

scalability, and placement in containerized fog clusters. We

were then able to model the scaling and placement problem

as an MDP with three different costs: response, resources,

and distance costs. Our model is able to accommodate the

randomly changing users’ demands and available resources

of fogs in the cluster. Through our modeling, the agent is

able to make the scaling and placement decisions at once.

We then used SARSA in order to build FScaler that can

intelligently manage the scaling and placement decisions by

reaching the optimal policy. A series of experiments were

conducted with real datasets that showed the ability of FScaler

to converge by reaching the optimal policy. In our experiments,

we considered two small test cases in terms of the cluster size

and maximum possible response. In other scenarios, SARSA is

not guaranteed to converge for larger test cases due to the curse

of dimensionality problem. Therefore, our future direction is

to build a function approximation for our formulation to form

agents that can scale for large test cases. Finally, it is also

important to note that this scaling approach can serve many

other purposes such as distributing the load on the cloud to

accommodate for unpredicted heavy demands like offloading

tasks [13], improving security detections [14], and can be

integrated into different clustering protocols [15], [16].
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