
1932-4537 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2021.3066625, IEEE
Transactions on Network and Service Management

1

AI-based Resource Provisioning of IoE Services in
6G: A Deep Reinforcement Learning Approach

Hani Sami∗, Hadi Otrok†, Jamal Bentahar∗, Azzam Mourad‡
∗Concordia Institute for Information Systems Engineering, Concordia University, Montreal, Canada
†Center of Cyber-Physical Systems (C2PS), Department of EECS, Khalifa University, Abu Dhabi, UAE
‡Department of Computer science and Mathematics, Lebanese American University, Beirut, Lebanon

hani.sami@mail.concordia.ca, hadi.otrok@ku.ac.ae, bentahar@ciise.concordia.ca, azzam.mourad@lau.edu.lb

Abstract—Currently, researchers have motivated a vision of 6G
for empowering the new generation of the Internet of Everything
(IoE) services that are not supported by 5G. In the context of
6G, more computing resources are required, a problem that is
dealt with by Mobile Edge Computing (MEC). However, due to
the dynamic change of service demands from various locations,
the limitation of available computing resources of MEC, and the
increase in the number and complexity of IoE services, intelligent
resource provisioning for multiple applications is vital. To address
this challenging issue, we propose in this paper IScaler, a
novel intelligent and proactive IoE resource scaling and service
placement solution. IScaler is tailored for MEC and benefits
from the new advancements in Deep Reinforcement Learning
(DRL). Multiple requirements are considered in the design of
IScaler’s Markov Decision Process. These requirements include
the prediction of the resource usage of scaled applications, the
prediction of available resources by hosting servers, performing
combined horizontal and vertical scaling, as well as making
service placement decisions. The use of DRL to solve this problem
raises several challenges that prevent the realization of IScaler’s
full potential, including exploration errors and long learning time.
These challenges are tackled by proposing an architecture that
embeds an Intelligent Scaling and Placement module (ISP). ISP
utilizes IScaler and an optimizer based on heuristics as a boot-
strapper and backup. Finally, we use the Google Cluster Usage
Trace dataset to perform real-life simulations and illustrate the
effectiveness of IScaler’s multi-application autonomous resource
provisioning.

Index Terms—Resource Provisioning, Deep Reinforcement
Learning (DRL), Service Placement, Resource Scaling, 5G, 6G,
AI, Internet of Everything (IoE).

I. INTRODUCTION

Context: The main applications supported by 5G include
the augmented and virtual reality, smart vehicles, drones,
millions of connected Internet of Things (IoT) devices for
industrial, medical, and smart city applications [1]. Despite
the promises that 5G offers, researchers are highlighting the
need for 6G with a terabyte of data rate per second, which
will expand 5G’s capabilities and open the door for supporting
a new generation of applications. These applications include
services for supporting the Internet of Everything (IoE) and
Artificial Intelligence’s (AI) distributed learning [2]. In fact,
authors in [3] propose an AI-enabled intelligent architecture
for smart knowledge discovery in the 6G network, allowing
the integration of AI algorithms in the wireless communication
stack. The increase in IoT devices and users’ requests for
services leads to high volumes of data, which can be employed

by AI agents to build knowledge towards solving challenging
problems. These problems usually require human intervention,
such as real-time wireless network and computing resource
management for 6G environments.

The fog and edge nodes offer low communication latency
for users and applications in the form of services. Mobile
Edge Computing (MEC) is the scientific term for edge nodes
that supports 5G’s services [4]. While the addition of MEC
is a point of consideration in 5G networks, MEC will be
one of the building blocks of the future 6G architecture due
to the increasing need for computation support for multiple
applications [5]. Furthermore, because of the dynamic
change in demands, the heterogeneous types of resources
for MEC servers, and the need for fast service updates, the
container-based hosting technology is proven to be suitable
for orchestration and scaling in the MEC environments [6], [7].

Motivation: Aware of the increase in the number of
heterogeneous IoE services, the limitation of MEC computing
resources, and the dynamic change of service demands from
different types of users, dynamic resource management of
IoE services and MEC servers is essential in 5G and 6G
[8], [9]. For instance, the increase of road traffic between
residual and business areas requires scaling and orchestration
of the autonomous driving services to accommodate for the
dynamic changes of demands [10], [11]. Other examples of
services include vehicular network management [12], [13]
and unmanned aerial vehicles support for mobility [14],
[15]. Performing manual scaling for such applications is
not feasible in the long run. Therefore, there is a need for
a joint intelligent resource scaling and service placement
solution. Such a solution should be automated using AI,
can be deployed in existing architectures, and produces
decisions while considering multiple applications. Moreover,
the intelligent solution is supposed to utilize containers due to
their suitability for service updates. Furthermore, it is crucial
to mention that containers of multi-application hosted in 5G or
6G environments are managed in a cluster-based architecture
using an orchestration tool like Kubernetes [16]. Henceforth,
it is sufficient to develop a resource management solution
that works in container-based multi-application clusters to
support the cellular networks’ environment. Consequently,
our main objective in this paper is to develop an effective
and intelligent scaling and placement solution.

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on June 25,2021 at 07:34:24 UTC from IEEE Xplore. Restrictions apply.

1932-4537 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2021.3066625, IEEE
Transactions on Network and Service Management

2

Problems & Challenges: An effective auto-scaling and
placement solution requires an intelligent model capable of
predicting the users’ demand or the usage of resources by
various applications. Proactive provisioning, which prepares
what the application needs as resources in the near future, is
essential to avoid the time for initialing the Kubernetes cluster
and updating IoE services. Resource scaling decisions should
combine horizontal and vertical scaling for more optimized
resource usage [17]. In short, horizontal and vertical scal-
ing imply adding/removing service instances to/from running
hosts, and adjusting the amount of resources used by a
running instance respectively. Unfortunately, existing auto-
scaling solutions do not have robust models for predicting the
change in demands for services [16]. Moreover, hosts running
the application instance offer a certain volume of resources that
are subject to change depending on other running applications.
Performing scaling on hosts with varying resource availability
can cause resource overflow and application downtime. Fur-
thermore, horizontal scaling creates new instances of services
that should be placed on the correct host of a cluster, following
a specific set of edge computing objectives [18]. Moreover,
existing solutions are targeting a single application or service
for scaling [19][18]. However, it is important to study multi-
application scaling in the same cluster for achieving combined
management of resources [20]. Finally, a large enterprise
application may run a large cluster and many applications that
require scaling, demanding a scalable solution.

To sum up, the limitations of existing auto-scaling solutions
can be categorized as follows:

1) Unstable models for predicting the change of demand or
resource usage by applications running on MEC servers.

2) A prediction model for the change of available resources
on MEC servers is still not explored.

3) A service placement scheme for scaled services is not
offered in the MEC context.

4) Multi-application scaling is not supported.
5) A scalable resource provisioning solution is not studied

for large MEC clusters.
Aware of the above limitations and cooping with 1) the Deep

Reinforcement Learning (DRL) advancements in the resource
management field [21], and 2) the potential of having an AI
fostered environment in 6G [22], exploring the use of DRL as
a resource management solution is promising. There are some
proposals in the literature that use Reinforcement Learning
(RL) to construct an auto-scaler [18][19][23][24], however,
they do not comply with 6G environment requirements. In
[18], the authors proposed Dyna-Q, a solution that employs
a model-based RL algorithm. The main problem with such
an approach is the assumption that the transition probability
matrix of the environment is given, which is not applicable in
real life. Besides, the proposed MDP design in the literature
does not consider the change in resources and the need for a
service placement technique and does not scale for large inputs
by causing memory issues. In the case of resource scaling,
mistakes in producing decisions are not permitted due to the
possibility of affecting the application availability. Therefore,
the Quality of Service (QoS) and the Quality of Experience

(QoE) are consequently affected. In summary, the challenges
for building a DRL-based solution to perform auto-scaling:

1) A flexible and scalable MDP design that can meet the
described auto-scaling requirements is required.

2) The probability transition matrix of the environment is
unknown, hence a model-free RL algorithm must be built.

3) A model-free RL algorithm poses errors at the learning
stages that should be avoided in scaling.

Contributions: To overcome these challenges and limita-
tions, we propose in this paper IScaler, a DRL-based resource
scaling and service placement solution combined with a suit-
able architecture for integration in clustering environments.
IScaler is an extension of our previous work in [25], where
horizontal scaling of a single application using the SARSA
RL algorithm was proposed. The MDP design of IScaler is
well studied to consider predicting the change in user demands
reflected by the resource usage and the change of available
resources on hosting nodes in the cluster. The efficient IScaler
predictions allows performing proactive decisions. Moreover,
the service placement solution is embedded in the state repre-
sentation of the MDP and performs combined horizontal and
vertical scaling in the action space. IScaler uses a custom-built
model-free DRL algorithm that utilizes our designed MDP to
build an optimal control policy. We also propose embedding
IScaler in an Intelligent Scaling and Placement module (ISP)
module that runs IScaler, an optimizer module (thereafter
called Optimizer), and a solution switch module (thereafter
called Solution Switch). The optimizer runs a heuristic-based
solution to perform scaling when IScaler is not ready. Once
IScaler learning converges, the Solution Switch is triggered to
shift from the use of the Optimizer to start executing IScaler’s
decision in the environment. The contributions of this work
are summarized as follows:

• A novel architecture that embeds ISP as a service for
bootstrapping IScaler, our DRL-based solution.

• An MDP design for building IScaler, while respecting the
MEC requirements.

• A custom DQN algorithm to build the novel IScaler.

A series of experiments using the Google Cluster Usage
Trace dataset [26] are conducted. Through these experiments,
we illustrate the ability of IScaler to perform optimal auto-
scaling decisions in multi-application container-based cluster-
ing environments. We also experiment with the agent behavior
during the changes in demand compared to the recent Dyna-Q
solution [18]. Finally, we illustrate the advantages of using our
ISP to overcome existing DRL limitations.

The remainder of this paper is divided as follows. In Section
II, we present the existing academic and industry-related
work. In Section III, we describe the problem statement of
resource scaling. Our proposed approach embedding IScaler
is demonstrated in Section IV. In Section V, we provide
the novel MDP design of the scaling problem. Afterward,
experiments are conducted for evaluating the performance of
ISP and IScaler in Section VII. Finally, the conclusion wraps
up the paper in Section VIII.

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on June 25,2021 at 07:34:24 UTC from IEEE Xplore. Restrictions apply.

1932-4537 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2021.3066625, IEEE
Transactions on Network and Service Management

3

II. RELATED WORK

In this section, we overview the latest literature work
that attempt to provide solutions related to dynamic resource
provisioning in academia an industry. Table I summarizes and
compares the features and limitations of each of the existing
work compared to our proposed solution.

A. Classical Solutions

Classical solutions do not employ intelligent or machine-
learning-based solutions. For instance, the authors in [30]
deploys a space-search pruning algorithm to find the best edge
server for migration and scaling. Despite that the complexity
of the search algorithm can grow exponentially in the worst
case, the solution has to wait for the demands to occur to make
a decision. On the other side, the authors in [29] measure the
system state and classify its workload into low, medium, and
high based on predefined thresholds. Similar to [30], downtime
or degradation of QoS can happen while scaling resources. In
addition, the work in [31] proposes the use of a heuristics
search algorithm to perform the resource scaling in a cloud
environment. The limitation in [31] is the use of a heuristic-
based solution to perform the scaling after the increase in
demand occurs, which directly affects the QoS. Besides, a
heuristic solution does not guarantee an optimal solutions.

B. Machine Learning Solutions

There are many recent proposals that utilize machine learn-
ing to solve wireless and resource management problems.
In this section, we focus on the RL-based solutions, which
outperform classical machine learning solutions due to their
ability to perform linear and non-linear approximations for the
state-action value function, adapt to environmental changes,
and learn without prior knowledge. The main RL applications
in the context of resource provisioning include network re-
source management, computational resource scaling, wireless
network security, and content caching [32]. DRL solutions
exist for each application under different fields, such as the
internet of vehicles, unmanned aerial vehicles, cloud, edge
computing, and cellular technologies (5G & 6G) [32]. With
regard to network management, DRL is used for solving the
problem of resource management for network slicing [33].
Besides, DRL is also exploited in [34] for securing the wireless
communication at the physical layer by adjusting the agent’s
reflecting elements with a base station. In [35], RL-based
linear function approximation is used for content caching
on base stations in the context of 5G based on the change
of users’ demand. In the same context, the authors in [18]
builds a Markov Decision Process (MDP) by defining the
states, actions, reward function, and retrieving the probability
transition function. In their work, a Model-Based RL solution
is proposed to take the scaling decision while knowing the
probability transition function through period updates. As
shown in Table I, the main limitation of [18] is the risk of
application downtime. Downtime can happen in two cases.
First, the probability transition matrix extracted might not be
representative enough of the dynamics of the environments.

Therefore, wrong scaling decisions are possible to be made.
Second, in case the state space grows, it becomes impossible
to estimate the probability transition function because this will
require huge memory on the processing machine.
More recently, several approaches, such as [27] and [28], are
working on improving the prediction of workload forecast-
ing, which leads to accurate scaling decisions if successful.
However, these time-series forecasting approaches still look
for seasonality and pattern in the data studied, which drains
its accuracy in case new patterns are encountered.

C. Industry-Based Solutions

Dynamic resource scaling is mandatory in any clustering en-
vironment that hosts services or executes computing tasks. The
leading industry companies that offer cloud platforms offer
the service scaling feature. Examples of these cloud solutions
are Google Cloud Platform, Microsoft Azure, and Amazon
Web Services (AWS). These solutions integrate the Kubernetes
clustering tool to benefit from the orchestration and embedded
scaling features, thus offering new environments titled Google
GKE 1, Azure AKS 2, and AWS EKS 3. As shown in Table I,
these environments offer vertical, horizontal, or both scaling,
as well as availability because of the multi-zone hosting of
services inside Kubernetes clusters. The main limitation of
these environments is that the demands of services, such as
resource load or response time experienced by the user, are
not predicted. These solutions either rely on thresholds or
manual configurations similar to Azure AutoScale, which runs
per application instance 4. Such problems are resolved by a
platform-native solution for AWS titled Auto Scaling, which
is independent of Kubernetes 5. In AWS Auto Scaling, time
series prediction takes place to be able to scale the application
instance before actual demands occur. As mentioned earlier,
this method is not reliable because the time-series model might
not be able to capture seasonality or signature in the demands.

Resource load is not an accurate measure of the scaling
decision in cluster-based environments; however, most of the
recent research and industry approaches are utilizing this
metric at the service instance and cluster levels. Moreover,
as shown in Table I, some solutions do not consider service
placement because either they perform vertical scaling only
or they run the horizontal scaling inside the same hosting
machine. Additionally, the resources available on the servers
may vary because of hosting several other independent appli-
cations. However, resource prediction is not considered by the
aforementioned state of the art solutions.

III. PROBLEM STATEMENT

Resource scaling is necessary for dynamic resource manage-
ment of clustered computing environments. In the literature,
resource scaling methods can either be vertical or horizontal
for one micro-service. Horizontal scaling scales an instance

1https://cloud.google.com/kubernetes-engine
2https://azure.microsoft.com/en-us/services/kubernetes-service/
3https://aws.amazon.com/eks/
4https://azure.microsoft.com/en-ca/features/autoscale/
5https://aws.amazon.com/autoscaling/

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on June 25,2021 at 07:34:24 UTC from IEEE Xplore. Restrictions apply.

1932-4537 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2021.3066625, IEEE
Transactions on Network and Service Management

4

TABLE I: Table of Comparison Between Latest Resource Scaling Solutions

Service
Horizontal

Scaling
Vertical
Scaling Availability

Demands
Prediction

Adaptation
to Changes

Input
Scaling

Service
Placement

Resources
Prediction

Model
Bootstrapping

AWS EKS - - - - -
AWS Auto Scaling - - - - - -

Azure AKS - - - - -
Azure AutoScale - - - - - - -

Google GKE - - - -
[18], [19], [23], [24] - - - -

[27], [28] - - - - - - -
[29], [30] - - - - - - - -

[31] - - - - - - -
I-Scaler

Fig. 1: Visual Representation of the Horizontal and Vertical
Resource Scaling Problem

in and out. Scale-out means creating and placing copies of a
micro-service in the cluster, while scale-in means removing
placed instances. Horizontal scaling requires a service place-
ment decision, which assigns or remove services to and from
the servers based on preferred objectives. Besides, vertical
scaling is composed of Scale-up and Scale-down methods,
which adjust the CPU and Memory for a micro-service.
Scaling in and down are very important for improving energy
and resource consumption and offering more resources to be
utilized by other applications running in the cluster. A better
visualization of resource scaling and service placement is
depicted in Fig. 1.

In this paper, we develop a multi-application scaling and
placement solution, which can be integrated into any service-
based clustering environment running containers and orches-
tration technologies, such as MEC. In reality, resource scaling
is accompanied by many requirements and sub-problems,
which render the decision challenging. For instance, multiple
applications could run on the same cluster; therefore, multi-
application resource horizontal and vertical scaling is essential
to find a balance between the different applications. Besides,
in case scaling is not proactive, the QoS and QoE are affected.
For instance, in case of scaling is performed as demands
occur, the user might encounter a service delay, which can be
measured from the starting time of demands to the time when
scaling is performed. Hence, proactive scaling of resources

is mandatory. Knowing that available resources of worker
nodes can change, a prediction of availability is necessary for
proactive scaling. Aside from executing the scaling decision,
the target hosting worker should be identified to remove or add
instances. This is known as the service placement problem,
where decisions are made based on many objectives that can
be configured depending on the cluster’s situation. In other
words, the cluster might be situated at the edge; therefore,
placing a service closer to the user is required.

IV. ARCHITECTURE FOR RESOURCE PROVISIONING IN
MEC CLUSTERS

In this section, we present our architecture for integrat-
ing the IScaler technology in MEC clusters serving a 6G
environment. This includes container-based clustering archi-
tectures managed using an orchestration technology. In this
architecture, we apply changes to existing master nodes at
the orchestration layer. These changes include the novel ISP
module, which is responsible for performing intelligent scaling
using IScaler and avoiding the challenges of using DRL.

A. Architecture Overview

For simplicity, we assume in this paper that Kubernetes
clusters are used for scaling, which is dedicated to managing
Docker containers. Kubernetes also offers a suitable environ-
ment for managing and scaling resources, as well as load
balancing the tasks on running instances. As shown in Fig.
2, this architecture covers the common cases of running an
MEC cluster that contains orchestrators and worker nodes.
In the MEC layer, the orchestrator performs scaling through
IScaler, and the MEC servers host services and execute scaling
decision. Finally, the user layer tha generates requests.

The cluster manager node runs the necessary Kubernetes
components for cluster and connection management. The mas-
ter is responsible for adding and removing worker nodes from
the cluster. Moreover, installing, removing, and performing
physical scaling are done through the master controller. A
connection to all workers is checked for ensuring healthy
running services. Failure to reaching services results in reboot-
ing or migration to other workers. Besides, the master node
receives information about the loads of each worker to perform
optimal load balancing. The information is stored in log files,
which are used for IScaler learning. Utilizing these standard
functionalities of the master node, we propose the integration

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on June 25,2021 at 07:34:24 UTC from IEEE Xplore. Restrictions apply.

1932-4537 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2021.3066625, IEEE
Transactions on Network and Service Management

5

Fig. 2: Resource Provisioning Architecture for IoE Services
Hosted by an MEC Cluster in a 6G Environment

of the ISP module described in Section IV-B2. Besides, the
communications that happen between the master and worker
nodes at the MEC layer of the 6G environment go through the
6G network.

The worker nodes in our architecture are running at the
MEC layer. The nodes can resemble any computing device,
ranging from a mobile phone to a powerful server or a
base station compute engine. These devices run the required
Kubernetes components to be able to join the cluster and
communicate with the master. Worker nodes receive orders
from the master to host services. These services run in the form
of containers hosted inside pods. A worker is also responsible
for sending periodic updates about the current status and the
time of availability to the master. More importantly, the worker
nodes host services for supporting the requests coming from
the user layer. These requests arrive with different levels of
demands that change over time and have to be supported.
These demands are reflected on a load of worker nodes. Hence,
the master’s job is to load balance these requests and use
IScaler to scale the available resources proactively using AI.

In our architecture, users requesting edge services through
the 6G network can be any computing device that initiates
requests and can range from small IoT devices to powerful
computing servers. Using IScaler and in case the edge servers
have enough available resources, users are guaranteed highly
available applications and a satisfactory QoE with a high
response rate and negligible delay.

B. Architecture Components

Resource scaling does not tolerate mistakes or sub-optimal
decisions that directly affect the hosted applications by causing
downtime and disrupting the QoS and QoE. IScaler utilizes
model-free DRL; therefore, the agent learns the environment
from scratch through interaction and trial and error. Hence-
forth, by using DRL, IScaler is subject to producing wrong
decisions at the starting stages of learning, or when unseen
patterns or new states are encountered and a model update
is needed. To solve this issue, we propose in this section a
novel architecture utilizing an optimizer combined with IScaler
to cover possible errors during the learning phases. Also,
our architecture offers a suitable environment for IScaler to
learn using the collected application logs. A description of the
orchestration layer’s components is presented in Fig. 3 and
described in the sequel.

1) CaaS Module: The Container as a Service (CaaS) mod-
ule presents the different Kubernetes components that should
be running on the master node. The cluster orchestrator is the
manager for its cluster. Workers’ initialization, management,
and configuration happen through the cluster orchestration
entity. Moreover, this entity is responsible for updating the logs
that represent the worker nodes’ status and load. Besides, the
cluster controller component is the direct connection with the
worker node, which distributes, scales, and organizes services
following the instructions of the cluster orchestration entity
[36].

2) The Intelligent Scaling and Placement (ISP): The intel-
ligent scaling and placement sublayer is composed of IScaler,
the Optimizer, and the Solution Switch. These components can
be integrated into existing cluster orchestrators for performing
resource scaling. IScaler is the DRL-based resource scaling
solution that is responsible for proactively scaling computing
resources and placing newly formed services on available
servers. DRL solutions require time to learn by interacting with
the environment in two cases: (1) learning the environment
from scratch through trial and error, and (2) facing unseen
patterns of services’ demand or available resources in the
studied data. These two factors cause the agent to make
mistakes while performing the scaling decisions. To overcome
this issue, we host a heuristic solution on the orchestrator as
an alternate solution to replace IScaler while learning, and
that confirms IScaler’s correctness when making decisions
on newly observed states or patterns. In other words, the
Optimizer component is the bootstrapping tool for IScaler.
The Solution Switch unit is utilized to check if IScaler’s
learning converges, to find the right time to switch between the
Optimizer and IScaler solutions. This unit takes the output of
IScaler and compares it with the one issued by the Optimizer.
For simplicity, we use a threshold-based approach that counts
and evaluates the correctness of the IScaler decision compared
to heuristics. In case this count exceeds a predefined threshold,
for instance, one hundred consecutive correct decisions, the
orchestrator switches to using IScaler. It is also important to
note that a heuristic solution cannot replace IScaler because:
(1) a heuristic solution has to wait for demands to occur
because it cannot take proactive decisions, and (2) heuristics

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on June 25,2021 at 07:34:24 UTC from IEEE Xplore. Restrictions apply.

1932-4537 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2021.3066625, IEEE
Transactions on Network and Service Management

6

Fig. 3: MEC Architecture Components Embedding ISP for
Enabling IScaler

cannot always guarantee a good solution.
3) Learning Data From Logs: Data utilized by the Opti-

mizer and IScaler to learn and make decisions are provided
by the Solution Switch module. This module keeps track
of the current loads of each edge server and monitors the
demands of hosted micro-services at the edge. The service
mesh component is utilized by the Optimizer and IScaler to
respect the connection between microservices. Despite that
these data are used for learning, they can be used by the
Solution Switch to monitor IScaler’s performance to take
further actions.

V. MDP FORMULATION FOR ISCALER

IScaler agent utilizes a model-free DRL algorithm for learn-
ing. DRL takes as input a representation of the environment
MDP model and tries to learn its dynamics or state transitions
following some actions. In this section, we present a novel
MDP formulation for performing proactive resource scaling
and service placement while considering the change in users’
demand and available resources. Our MDP design guarantees
scalability by handling large inputs. In other words, IScaler is
still able to perform fast learning in case of a large input, in
addition to consuming less memory while learning.

A. Background

An MDP is a mathematical formulation for modeling se-
quential decisions in a stochastic environment and is the main
framework applied to problems solved using RL. An MDP is
characterized by the following tuple (S,A,Pr, C,Y). This tu-
ple is a design choice that can affect the RL solution scalability
and speed of convergence. S = {s1, s2, . . . } is the state space,
i.e., the set of all states of the environment. Problems can have
a finite or infinite number of states. A = {a1, a2, . . . , al} is
the action space, i.e., the set of possible actions the agent can

take at any given state. Pr is the probability transition matrix
which outputs for each state s the probability distribution for
going to the next state s’ when performing action a. When
Pr is given, model-based RL is used. However, in most real-
life applications, Pr is not known. In this case, model-free RL
techniques are used to estimate it. C is the cost function which
reflects the objectives of the agent. C takes the current state,
action, and next state, and outputs a value to be minimized.
Finally, Y is the discount factor, which is a decimal number
∈ [0, 1] and is usually close to one. The main use of Y is to
speed the convergence by discounting over the reward of the
next states. In order to build a DRL solution for IScaler, we
need to define these elements of the MDP tuple. In the sequel,
we provide a novel design of each element.

B. State and Action Spaces

IScaler is a multi-application scaling solution, where ev-
ery application has a set of services. Hence, we denote by
G = {G1, G2, . . . , Gg} the set of applications of size g,
which are represented by services. In addition, We denote
by E = {E1, E2, . . . , En} the set of services of size n. A
service Ei ∈ E is represented as: Ei = [Ecpui , Ememi , Eprii , k],
where 1 ≤ i ≤ n and Ecpui , Ememi are the CPU and memory
requirements respectively. Moreover, Eprii is an integer rep-
resenting the priority level over other services. When Eprii is
high, Ei has a high priority to be considered for scaling and
placement before other services with lower priority. Finally,
k is the application index implying that Ei ∈ Gk. On the
other hand, we denote H = {H1, H2, . . . ,Hm} the set of
available hosts of size m that are running the services in E .
Every host Hj is represented as Hj = [Hcpu

j , Hmem
j , Hdis

j],
where 1 ≤ j ≤ m and Hcpu

j , Hmem
j , Hdis

j are the CPU and
memory available and the distance of this host from the group
of requesting users respectively. As highlighted in Section
IV, the hosting cluster can run at the MEC layer. In this
case, there are specific requirements for hosting services. For
instance, service placement should consider minimizing the
hosts distances from the area of the users. Consequently, the
host distance feature is considered later as one of the objectives
in the MDP cost function described in Section V.

In our state space, we represent the change in users demand
and resource availability of each host in the cluster at different
timestamp t. In each state, q(t) represents the change in
demand for different services, where q(t)i is a matrix of size
m×2, which contains the average resource usage of CPU and
memory of service Ei at t for every host in H. The values
in q(t) are normalized to the total resource available on the
hosts. Furthermore, we denote by r(t) a matrix of size m× 2
representing the normalized available resources of all hosts at
t. r(t)j denotes the line j of r(t) that represents the average
resources for host Hj , i.e., r(t)cpuj for CPU and r(t)memj for
memory. Besides, available resources at a given state can be
bounded by how much resources can service Ei use to scale.
This boundary is set by a system administrator in order to
leave space for other applications to scale in case the system
is overloaded. To keep track of the latest scaling decisions,
we denote by p(t) the matrix of size m× n that stores these

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on June 25,2021 at 07:34:24 UTC from IEEE Xplore. Restrictions apply.

1932-4537 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2021.3066625, IEEE
Transactions on Network and Service Management

7

decisions taken at each host for each service. Each element
p(t)i,j contains the CPU and memory allocations represented
as p(t)cpui,j and p(t)memi,j respectively. Thereafter, we represent
a state s at t in our state space as follows:

s(t, i, j) = (q(t), r(t), p(t), i, j) (1)

Following Equation 1, i and j are part of the state repre-
sentation to denote the current service and host the agent is
performing the decision for. The full p(t), q(t), r(t) matrices
are required in each state representation to make a combined
decision while considering all services requirements and hosts
availabilities. During t, the agent passes over all services and
makes scaling decisions for each one separately. This reduces
the action space and makes our MDP design scalable no matter
the input size.

The action space in our MDP has a constant size which
is very important for the model scalability. Every action a
is composed of a list of two elements that hold the scaling
decision of the CPU and memory for a given state. A scaling
decision for CPU for instance is denoted as a[0] and belongs to
{−u,−1, 0, 1, u}. In this set, ±1 denotes horizontal scaling,
±u is a decimal value that denotes vertical scaling, and 0
means no action is taken. It is important to emphasize that
some actions are not feasible; however, if taken, the agent is
punished using our cost function described in Section V-D.

C. States Transition and Model Dynamics

IScaler state design presented in Section V-B relies on q(t)
and r(t), which are the applications’ resource requirements
and the available resource at the next timestep t respectively.
The values of these lists are unknown and are hard to predict.
In other words, q(t) and r(t) have a stochastic behavior which
is based on the demand change of the user for an application
and the change in resource usage of hosting servers in the
cluster. Because these values are unknown, Pr of our MDP is
unknown. Henceforth, the RL algorithm that should be used
for these environments is model-free. On the other hand, the
state design entails the ability to perform scaling decisions for
large clusters hosting several applications. To avoid blowing
the action space, each state within a given timestep is divided
into several steps.

Assuming that the current state is at t, the state representa-
tion is (q(t), r(t), p(t), i+, j+). For instance, if the timestep is
t, there are two loops of iterations defining the next states. The
first loop considers fixing an application service and increasing
j by one until passing over all the hosts and choosing the
proper scaling action from A. Once j = m, j+ becomes
zero and i is increased by 1, which is denoted as i+. Hence,
j+ = j < m : j+1 ? 0. In addition, i+ = j = m : i+1 ? i,
which means that i+ increases i by 1 in case j = m and does
not change i otherwise. Moreover, p(t) at a state is updated
by every scaling decision for the given i and j. It is important
to note that for these internal iterations within a timestep, q
and r are fixed until the agent moves to the next timestep. In
this case, i, j, and p(t) reset to zero, and a new q and r are
observed by the agent.

D. Cost Function

Given the current state, the action taken, and the next state
the agent results in, the cost function is calculated. When
navigating in the state space, the goal of IScaler is to select the
best action of the current state that results in the minimum cost.
In other words, the correct selection of the action using the cost
function C helps in forming an optimal policy for IScaler. In
this section, we present four different objectives composing the
cost function. These objectives are: (1) minimize the applica-
tion load, (2) minimize the overload of the available resources,
(3) minimize the containers priority cost, and (4) minimize the
cost of other customizable objectives, such as minimizing the
distance cost from the serving edge workers to actors. Taking
an action moves the agent to the next timestep, i.e. from t−1 to
t. A cost is represented as C(s(t−1), a(t)|s(t)). In the sequel,
we present the mathematical formulation of each objective in
the proposed cost function.

1) Minimize Application Load: The purpose of this objec-
tive function is to meet the load of different applications at
the next timestep. Considering that the applications’ loads are
predicted, C1 evaluates the scaling decision and compares the
allocated resources to the ones required by each application. If
the scaling decision underestimates the load, the cost returned
is the difference between the actually required resources and
the scaled ones. In case the demands are met for an appli-
cation, the resource cost returned is zero. For this objective,
we consider the cost of meeting the applications’ resource
requirements for both CPU and memory. Mathematically, C1

of the CPU cost is represented in Equation 2.

Ccpu1 (t) =

∑n
i=1(q(t)

cpu
i −

∑m
j=1 p(t)

cpu
j,i × E

cpu
i)∑n

i=1 q(t)
cpu
i

(2)

such that ∀i,
m∑
j=1

p(t)cpuj,i × E
cpu
i < q(t)cpui

where q(t)cpui is the CPU usage of service i
and Ecpui is its CPU requirement. Otherwise, if
∃i s.t. q(t)cpui ≤

∑m
j=1 p(t)

cpu
j,i × Ecpui , the cost of

this service is zero because the resource requirements for the
application are met. We also divide the cost by

∑n
i=1 q(t)

cpu
i

for normalization. It is important to note that Equation 2
refers to CPU calculation, which is the same for memory
calculation; however, we use q(t)memi and Ememi instead of
q(t)cpui and Ecpui . Finally, C1(t) = Ccpu1 (t) + Cmem1 (t).

2) Minimize Available Resources Overload: In this objec-
tive function, the agent is punished for exceeding the use of
available resources using the proactive scaling decision made.
We denote C2 as the cost of this objective. C2 represents
the resource overload cost by each application for the CPU
and memory on each host. The CPU cost for this objective is
represented mathematically in Equation 3.

Ccpu2 (t) =

∑m
j=1

∑n
i=1(p(t)

cpu
j,i × E

cpu
i)− q(t)cpui∑m

j=1 r
cpu
j

(3)

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on June 25,2021 at 07:34:24 UTC from IEEE Xplore. Restrictions apply.

1932-4537 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2021.3066625, IEEE
Transactions on Network and Service Management

8

such that ∀j,
n∑
i=1

(p(t)cpuj,i × E
cpu
i) > q(t)cpui

In case the sum of scaled resources on at least
one host underestimates available resource (i.e.
∃j,

∑n
i=1(p(t)

cpu
j,i < 0), the agent is punished for the

action taken and a cost of k is returned for this objective,
where k > 1. The same punishment applies when the scaling
decision surpasses the available resources of any host (i.e.
∃j,

∑n
i=1(p(t)

cpu
j,i × Ecpui) > r(t)cpuj). Equation 3 applies

if the usage surpasses the required resource load identified.
Hence, the sum of the difference between the scaled resources
of each application and the actual required resource load
is returned. Otherwise, the cost is zero. In addition, A
normalization factor of

∑m
j=1 r

cpu
j is considered. Finally,

Similar to C1, C2(t) = Ccpu2 (t) + Cmem2 (t).

3) Priority Cost: A priority level is assigned to each service
description. This value prioritizes the scaling of a service over
others, which is important in the multi-application context
and helps IScaler make efficient decisions. The cost of this
objective is denoted as C3. Ccpu3 is mathematically formulated
in Equation 4 showing the CPU cost.

Ccpu3 (t) =

∑n
i=1

∑m
j=1(q(t)

cpu
i − p(t)cpuj,i × E

cpu
i)× Eprii∑n

i=1 q(t)
cpu
i × Ecpui

(4)

such that ∀i,
m∑
j=1

p(t)cpuj,i × E
cpu
i < q(t)cpui

In case the resource loads of the application at the next
timestep are met, or the service priority is zero, the cost
of this service is zero. Otherwise, Equation 4 is applied
to calculate the remaining amount of resources needed to
meet the resource load requirements of that service. Finally,
C3(t) = Ccpu3 (t) + Cmem3 (t).

4) Minimize Distance Cost: As highlighted earlier, the
infrastructure admin can add custom objectives to our IScaler
cost function. Using this custom objective, IScaler can adapt
and produce the desired scaling actions following specific
preferences related to the hosting environment. Supposing that
the cluster where IScaler is deployed is hosted at the edge,
one of the possible objectives to consider is minimizing the
distance between the edge worker and the group of requesting
users. Therefore, we present in Equation 5 a mathematical
representation of C4 for minimizing the total distance cost.

C4(t) =

∑m
j=1 v(t)j ×Hdis

j∑m
j=1H

dis
j

(5)

where Hdis
j is the distance cost of host Hj , and v(t) is a

vector of size m and is calculated as follows: ∀j, v(t)j = 1
if

∑n
i=1 p(t)i,j > 0 and 0 otherwise. A normalization factor

of
∑m
j=1H

dis
j is added.

Therefore, our cost function becomes:

C((s(t− 1), a(t))|s(t)) = λ1 × C1(t) + λ2 × C2(t)+

λ3 × C3(t) + λ4 × C4(t)
(6)

where λ ∈ [0, 1] is a weight corresponding to each cost func-

tion given
∑4
i=1 λi = 1. These weights are tuned depending

on the applications requirements and the nature of the cluster
to give some cost functions more importance over the others,
where the aim is to minimize C((s(t− 1), a(t))|s(t)).

VI. INTELLIGENT SCALING AND PLACEMENT (ISP)

A. IScaler using Deep Reinforcement Learning

The IScaler agent interacts with the environment for evalu-
ating the placement action taken for each container. The agent
executes actions for every state encountered and builds a strat-
egy that adapts to the stochastic demands of users requesting
services, as well as the change in available resources on worker
nodes. The end goal of the agent is to learn the transition
probability distribution from a state to all next states and find
the optimal policy π∗, which takes as input a state and outputs
the action that minimizes the future cost. In other words, π∗

is a strategy or a set of actions the agent takes to minimize the
cost. The future costs are discounted by γ, which controls the
effect of future actions on past and current states, and helps the
agent achieve faster convergence. let C(s(t−1), π|s(t)) be the
future discounted cost implied by choosing policy π at t that
indicates selecting an action a(t

′
), such that t ≤ t′ ≤ T where

T is the final timestep of the episodes. C(s(t− 1), π|s(t)) is
computed as follows:

C(s(t− 1), π) =
T∑
t′=t

γt
′
−tC(s(t

′
− 1), a(t

′
)|s(t

′
)) (7)

We denote by Q∗(s, a) the optimal action value function which
minimizes the average expected cost for any selected strategy.
It is expressed as follows:

Q∗(s, a) = min
π

E[C(s(t− 1), π)] (8)

where s(t− 1) = s, a(t) = a

Let [s..L] be the chain of states from s to L linked by
transitions using Pr. The optimal Q-function selects the action
of the next state that minimizes the action value function
following Equation 9:

Q∗(s, a) = Es′∈[s..L][C + γmin
a′

Q(s
′
, a

′
)] (9)

where C is the immediate cost from Equation 6, and Es′∈[s..L]
is the expected value from the current state s to the last state
L at T . The basic form of RL is to find the optimal action
value function using iterative updates following the Bellman
equation. This update can be expressed as:

Q(s, a) := Q(s, a) + α[C + γmin
a′

Q(s
′
, a

′
)] (10)

where α is the learning rate. In Equation 10, the update of the
Q-function happens following the Q-learning algorithm [37].
All Q-values are stored in a table structure containing the list
of states and actions. An exploration-exploitation trade-off aids
the agent into interacting with the environment by covering the
maximum number of possibilities, observing the cost signal,
and updating the Q-values using Equation 10.

However, the use of tabular RL is not practical in our prob-
lem, where we have a large state space. The state-space can

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on June 25,2021 at 07:34:24 UTC from IEEE Xplore. Restrictions apply.

1932-4537 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2021.3066625, IEEE
Transactions on Network and Service Management

9

grow with an increase in the number of containers and hosts
to place. Thus, handling the whole table in memory, trying to
cover all possible actions for every state, and updating the Q-
values for all of them is computationally very expensive. Such
an implementation is time-consuming and makes any tabular
RL agent diverges [38]. As a solution, learning the optimal Q-
values can be retrieved from some adjustable weights denoted
as θ. These weights get updated using gradient descent to
update the weights downwards towards the direction of the
gradient for minimizing the error of the calculated Q-values
for every iteration. The common form of approximation is the
linear function approximation, which generalizes the environ-
ment through its weight, where the Q-function becomes close
to the optimal Q∗ having Q∗(s, a) ≈ Q(s, a, θ).

Given the advantages of a linear approximation to overcome
the tabular learning limitations, these models will not be
able to generalize well when the model complexity and state
spaces increase. Here comes the advantage of using non-
linear approximations such as Deep Neural Network (DNN)
to approximate the environment, giving the agent the power of
Deep Learning (DL) to update its weights, where learning can
be customized [39]. The Deep Q-Network (DQN) algorithm
has the advantage of merging the concepts of RL and DL.
Henceforth and after experimenting with the different linear
approximation approaches for building our IScaler agent,
including Temporal Difference TD(0) and TD(λ) [40], DQN
outperforms the other approximation methods. Algorithm 1
provides a pseudo-code of our IScaler learning algorithm,
which benefits from the advancement in DQN.

As illustrated in Algorithm 1, we start by creating a multi-
layer perceptron for the source model used for calculating the
state action-value function Q using its weights θ. The input
to the model is a transition sample, and the output is a single
neuron with linear activation. A target multi-layer perceptron
is created, which is a copy of the source model. We denote by
θ− the weights of the target model, which are a copy of θ in the
initialization phase (line 1). We then initialize a replay buffer
D of size G = 1000, which stores the transition containing
the current state, the action taken, the cost retrieved, and the
next state-observed (line 2).

The learning starts by initializing a random state s(t) at the
beginning of every episode (line 5). X episodes are played
for learning. X varies depending on the input size for the test
case. Each episode is bounded by T learning steps. Every
step starts by deciding on the action taken for the current
state. We implement this decision by following the ε-greedy
policy, which is essential for achieving a trade-off between
exploration and exploitation. In ε-greedy, we set ε to be a
variable that decays over time. For instance, ε = B1

B2+NI
decreases as the number of iterations NI increases, where
B1 and B2 are two constants such that B1 < B2. We
then generate a random value of w between zero and one.
If 1 − ε > w, we select an action randomly from the action
space (lines 8-9). This is known as an exploration iteration
for the agent. Otherwise, the action having the maximum of
Q-value in the source model is selected (lines 10-11). This is
known as the exploitation iteration.

After taking the action, the agent observes the service

Algorithm 1: IScaler Algorithm Using DQN

1 Build a Multi-Layer Perceptron as source model to
calculate Q and randomly initialize its weights θ;

2 Build a target model for Q with weights θ− which are
a copy of θ;

3 Initialize replay buffer D to capacity G;
4 while episode X do
5 Initialize a random state s(t);
6 Reset t;
7 while t < T do

/* following ε-greedy policy */

8 if Random Selection then
9 select a(t+ 1) randomly from feasible

actions;
10 else
11 a(t+ 1) = maxaQ(s(t), a, θ);
12 end
13 Update p(t+ 1), observe q(t+ 1) and r(t+ 1);
14 Update j to j+; // if applicable

15 Update i to i+; // if applicable

16 Build s(t+ 1);
17 Calculate C(s(t), a(t+ 1)|s(t+ 1)) using

Equation 6;
18 Store [s(t); a(t+ 1); C(s(t), a(t+ 1)|s(t+ 1));

s(t+ 1)] in D;
19 Select random mini-batch transition of size Y

from D;
20 for k in length(mini-batch) do
21 yk = Ck + γmina′ Q(sk+1, a

′
, θ−);

22 end
23 Update θ using gradient descent towards

minimizing the loss: (y −Q(s, a, θ))
2 for

every transition;
24 if length(D) > G then
25 Pop out the oldest element in D;
26 end
27 Every Z steps, copy θ into θ−;
28 Update the current state to s(t+ 1);
29 Increment t;
30 end
31 Increment Episode;
32 end

demands and available resources after the service placement
is updated. This then allows the agent to calculate the cost
C(s(t), a(t + 1)|s(t + 1)) using Equation 6. After forming
the next state s(t + 1), a transition is stored in the replay
buffer (lines 13-18). Because updating the model online as
data comes causes instability, data are stored in the replay
buffer. Samples from these data, of size Y = 50, are extracted
randomly and uniformly to form the mini-batch dataset for the
model to train and break the problem of correlation between
sequences of actions (line 19). As mentioned previously, the
source weights are stored in the target model. This is vital to
improve the source model learning stability. The source model
adjusts θ of Q-function by using the predicted Q-values of

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on June 25,2021 at 07:34:24 UTC from IEEE Xplore. Restrictions apply.

1932-4537 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2021.3066625, IEEE
Transactions on Network and Service Management

10

the target model as labels (lines 20-22). This, in turn, builds a
supervised learning context with a fixed dataset and labels on
which to train. In our implementation of IScaler-based DQN,
loss functions are inferred and calculated for every iteration
using the mean squared error loss (line 23). This loss is back-
propagated to the neurons using the gradient-descent towards
minimizing the loss to get a better estimate of Q (line 23).
To preserve the RL concept for allowing the model to keep
on improving the Q-function as new data come, the replay
buffers D keeps on updating slowly by removing the oldest
transitions at every iteration when the buffer is full (lines 24-
26). On the other hand, the weights for the target model θ−

keeps on updating after Z = 500 (line 27).

B. Optimizer

An Evolutionary Memetic Algorithm (MA) is an extension
of the genetic algorithm that includes a local search. The local
search allows the heuristic solution to minimize the chance of
halting in a local optimal and offers faster convergence to a
near-optimal solution. The MA is used in our previous research
work for resource management [6], [41].

In the context of resource scaling and management, we
utilize the Optimizer to support IScaler in producing efficient
decisions. The implementation of the Optimizer is based on the
MA solution. In terms of the formulation of the MA, the inputs
to the algorithm are: the set of services E , the set of hosts
H, the set of resource usage of each application q after the
occurrence of the demands, and the set of currently available
resources r. The output of the MA is a two-dimensional matrix
of size m×n representing the scaling value of each container
on every host. An element in the output matrix is a value in
[0,Gmax] where Gmax denotes the maximum value a container
can be scaled to. Moreover, obviously, our MA solution for the
Optimizer uses the same cost function presented in Equation
6. This allows the Solution Switch to be able to compare the
output of the Optimizer and IScaler. More details about the
MA implementation can be found in [6].

VII. EXPERIMENTS AND EVALUATIONS

In this section, we describe the experimental setup and
elaborate on the different experiments conducted to show the
efficiency of the proposed IScaler in different contexts, the
advantage of utilizing the Optimizer within ISP, and finally a
comparison with a recent existing scaling solution. In brief,
the objectives are:
• Study IScaler DRL model convergence in a multi-

application context, in addition to studying the efficiency
of the decisions made towards resource provisioning.

• Highlight the advantage of using our Optimizer on the
orchestrator during the learning phase of IScaler.

• Compare the performance of IScaler to a model-based
RL algorithm for edge computing environments [18].

A. Experiment Setup

To meet the objectives of the experiment, we implemented
a DRL algorithm based on the proposed MDP design for

Fig. 4: GCT Services Resource Demands

building IScaler, a model-based RL algorithm called Dyna-Q
[18] for a comparative study with IScaler, the MA for simu-
lating the behavior of the Optimizer, and finally the Solution
Switch. The experiments were executed on a Windows 10
machine having a Core-i7 (12 CPUs), 32GB of RAM, and
an Nvidia Quadro P620 graphic card for GPU training. The
programming language used is Python V3.7, and we relied on
the Tensorflow library for the implementations of the source
and target deep learning models of IScaler [42]. The source
and target networks for the DRL implementation are deep
neural networks that consist of four layers having 32, 16,
8, and 1 neuron, respectively. The activation function on the
hidden layers is ReLU, while we are using a linear activation
on the output. The networks are configured to use the RMS
optimizer, the Huber loss, a learning rate of 0.001, and a batch
size of 60.

The conducted experiments are based on simulations on the
Google Cluster Usage Traces v3 2019 dataset (GCT) [26]. In
this dataset, google physical machines are used and grouped
into cells (clusters) having different resources allocated and
available. Moreover, jobs refer to users’ requests to execute a
certain task on the cluster. GCT provides the data describing
each machine in the cell, the resources allocated and available,
the jobs to be executed on each machine, and the required
resources in terms of CPU and memory. In our work, we map
the cell to a Kubernetes cluster where IScaler, the Optimizer,
and the Solution Switch are running. Machines in the cells
resemble the worker nodes of our clusters. Furthermore, the
jobs correspond to the containers to be scheduled in the cluster
and scaled using our solution.

Data pre-processing, cleaning and visualization are per-
formed on the dataset. For simplicity, three jobs/containers and
three machines/worker nodes are selected from the dataset and
visualized in Figs. 4 and 5. In Fig. 4, we show the average
change in CPU demands by three different services over mul-
tiple samples from the dataset. In this figure, the curve drops
imply a decrease in resource demands and therefore fewer
requests from users arrive. In contrast, the curve reaches higher
values when the demands of users increase. On the other
hand, Fig. 5 illustrates the change of the average available
resources for three different hosts sampled from the dataset.
These figures demonstrate a real-life scenario for the change
in demands and offered resources in the cluster. We benefit
from this data in our experiment to show the ability of IScaler
to adapt to these changes and perform efficient scaling and
service placement decisions. For Simplicity, we display the
CPU usage in the results instead of both CPU and Memory.

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on June 25,2021 at 07:34:24 UTC from IEEE Xplore. Restrictions apply.

1932-4537 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2021.3066625, IEEE
Transactions on Network and Service Management

11

Fig. 5: GCT Hosts Available Resources

Fig. 6: IScaler Convergence

B. Multi-Application Model Convergence

In this part, we experiment with the performance of IScaler
in a multi-application setting using the GCT dataset. In partic-
ular, we use the three samples of services and hosts described
in Section VII-A. Services are presented by {E1, E2, E3},
and hosts by {H1, H2, H3}. Following the objectives of our
cost function described in Section V-D, we assign to each
service a priority level, and for each host a distance value.
The distance value represents the distance between the host
location (longitude and latitude), and the central point between
a group of users. The priority levels are assigned as follows:
Epri1 = 1, Epri2 = 3, Epri3 = 2. Moreover, the distance value
assigned to each host are: Hdis

1 = 10 Hdis
2 = 20 Hdis

3 = 30.
Besides, we assign different weights to each objective of the
cost described in Section V-D. The weights assigned are:
λ1 = 0.2 , λ2 = 0.4 , λ3 = 0.2 , λ4 = 0.2. Consequently, the
objective of minimizing the resource load of the application
has more influence on the decision of the agent.

Following two million iterations of learning for IScaler
using data of demands and resource availability fed from the
GCT dataset, the model can converge with respect to the
cost value produced for every decision. The long time of
convergence is interpreted by the stochastic nature of demands
and available resources on the GCT dataset as shown in
Figs. 4 and 5. In Fig. 6, we show the convergence of our
proposed DRL solution. In this figure, we plot the variation
of the average cost value with respect to the average number
of iterations, which are considered epochs. This graph is
displayed on a logarithmic scale for better visualization of
the agent performance.

In addition, we study the efficiency of decisions made
during the learning and after the convergence with respect
to every objective of our cost function. In Fig. 7, we show
the amount of CPU resource load that is proactively prepared
for each service after scaling. In each graph, we plot the
averaged difference between the actually required resource and
the offered resources in the cluster with respect to the averaged

(a) E1 (b) E2 (c) E3

Fig. 7: The Difference Between Actual Demands and Offered
Resources for Each Service

(a) H1 (b) H2 (c) H3

Fig. 8: Remaining Available Resources of Each Host

number of iterations. This means that a closer value to zero
means exactly the required demands are offered. On the other
hand, a negative value indicates that the amount of offered
resources exceeds the actual requirements of each application.

As shown in the results of each figure, the amount of offered
resources is most of the time larger than the required ones at
the beginning of learning. This is because λ2 = 0.4 > λ1 =
0.2. Thus, meeting the amount of required resources has more
impact compared to using available resources. Besides, the
amount of utilized resources is approaching zero in each graph
as the agent converges. In the end, the agent is able to learn the
optimal resource allocation decisions for each service. More
importantly, the resource of E2 is exactly met at each iteration
due to the high priority score.

Available resources change over time, thus it is important to
check if IScaler is utilizing more than the available resources
on each host, which should be avoided. In Fig. 8, we show the
averaged difference between the utilized resources by IScaler
and the available resources on each host. A value of zero
means that IScaler is proactively using the exact amount of
available resource on this host, while a positive value indicates
the amount of remaining available resources IScaler can use.

As shown in Fig. 8, IScaler is able to converge while
respecting the change of available resources on each host. It is
important to note that the available resources on H1 are more
utilized compared to other hosts because H1 has the shortest
distance to the user. Moreover, as shown in the results of each
figure, IScaler is not utilizing the full available resources on
each host, therefore respecting the first objective in our cost
function to minimize the amount of utilized resources.

In summary, IScaler is capable of performing efficient
scaling decisions by meeting the load requirements for each
application, more importantly, the ones with high priority, and
respecting the amount of available resources for each host.

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on June 25,2021 at 07:34:24 UTC from IEEE Xplore. Restrictions apply.

1932-4537 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2021.3066625, IEEE
Transactions on Network and Service Management

12

Fig. 9: ISP Performance

C. ISP Performance

As shown in the results of Figs. 6, 7, and 8, the agent is per-
forming decisions that result in high costs on the environment.
The high cost is reflected in shortening the applications’ avail-
ability through unbalanced resource utilization and incorrect
scaling of containers. This behavior of a DRL agent can occur
in two cases. First, the agent is in the first stages of learning.
Second, the agent is facing an unprecedented change in the
environment that requires a model update. In both cases, the
Optimizer can intervene to perform the scaling decision until
IScaler develops a better model.

In order to experiment with the advantage of using the
Optimizer, we simulate the behavior of combining the Solution
Switch, the Optimizer, and the IScaler. While IScaler starts
learning from scratch, we use the same setting and input
of the previous experiment. The results of the averaged cost
function using ISP with respect to an averaged number of
iterations are shown in Fig. 9. As shown in this figure, the
cost of the decisions made is in the range between 0.14
and 0.3, including the first iterations when IScaler is making
inaccurate decisions. This explains the importance of using the
Optimizer for replacing IScaler. In this experiment, we queue
the results of the decisions made by IScaler and the Optimizer.
After every 100 iterations, the Solution Switch evaluates both
decisions to decide on the right solution to use. After 300, 000
iterations, the Solution Switch silently shifts from using the
Optimizer to IScaler for proactive decisions. As shown in
the graph, there are no jumps outside the range of [0.14, 0.3]
of cost because the model converges. One limitation remains
when using the Optimizer, which is the inability of performing
proactive decisions. Therefore, the scaling decision is made
after the demands occur.

Furthermore, we study the impact of using the Optimizer
on improving the quality of the decision to meet each of
the objectives of our cost function described in Section V-D.
Therefore, Figs. 10 and 11 present the amount of resource
load met for each application and the utilization of available
resources on each host, respectively.

As shown in the results of Fig. 10, the required resources for
each application are always met. Besides, the CPU resource
load of each service has a negative value sometimes. This
implies that services are assigned more resources compared
to the needed ones. The main reason behind this behavior
is that meeting the resource load has more importance over
minimizing the resources utilized on hosts (λ1 < λ2).

On the other hand, as shown in the results of Fig. 11, the

(a) E1 (b) E2 (c) E3

Fig. 10: Resource Load for Each Service

(a) H1 (b) H2 (c) H3

Fig. 11: Remaining Available Resources of Each Host

available resources for H2 and H3 are less utilized by IScaler
compared to H1. The main reason is that the shortest distance
from the users is H1. Therefore, the IScaler decision respects
the fourth objective of our MDP cost function to minimize the
distance from users.

D. IScaler v.s. Model-Based Scaling

A recent literature work proposed a horizontal and vertical
resource scaling for a single application using model-based
reinforcement learning [18]. Despite that the service placement
solution of that work is based on a heuristic solution, we
compare in this section the performance of model-based RL
to IScaler for a single application. Therefore, we replicate in
this experiment the Dyna-Q model-based algorithm proposed
in [18]. Some adjustments are applied to the state space
of the Dyna-Q model to perform a fair comparison with
IScaler. For instance, the features of service placement and the
representation of the change of available resources are applied.
Dyna-Q solution uses tabular Q-learning and estimates the
probability transition matrix Pr for learning the dynamics
of the environment. Despite that estimating Pr requires a lot
of computation and sometimes is not practical in the case of
large input spaces, the main objective of this experiment is to
compare the behavior of Dyna-Q and IScaler when a change
to the environment occurs. For this purpose, service E1 is
selected for scaling in both solutions on the three hosts. After
multiple episodes of learning for IScaler, and one iteration
for extracting Pr for Dyna-Q, a major drop in demands is
manually provoked in both environments. In order to compare
the performance of each agent, the results of the averaged cost
value are presented in Fig. 12b.

As shown in the results of Fig. 12b, the errors at the first
stages of the decision making are negligible for the model-
based Dyna-Q compared to IScaler performance in Fig. 12a.
This is obvious because the dynamics of the environment
are known for Dyna-Q. However, once unprecedented change
happens in the resource demands of the application, the errors

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on June 25,2021 at 07:34:24 UTC from IEEE Xplore. Restrictions apply.

1932-4537 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2021.3066625, IEEE
Transactions on Network and Service Management

13

(a) IScaler Performance - Model Free

(b) DynaQ Performance - Model Based

Fig. 12: IScaler Performance vs Dyna-Q

for Dyna-Q jump, as shown in the first graph of Fig. 12b.
This high error remains until Pr of Dyna-Q is updated with
new samples of data, making it impractical in such a dynamic
environment. On the other hand, it is noticeable that IScaler is
able to re-adjust the model, adapt to the environment change,
and converge again in minimal time. IScaler uses model-free
DRL for approximating Pr. This approximation dynamically
changes with respect to changes in the environment that are
interpreted through the reward signal.

VIII. CONCLUSION

Heading towards the development, hosting, and manage-
ment of the new generation of services that are supported by
5G and 6G requires, there is a need for massive availability
of computing resources, which is offered by the MEC. Due to
the limitation of MEC available resources, dynamic resource
management of multiple applications on the MEC infrastruc-
ture has been identified as one of the main challenges for the
future of cellular networks. Therefore, we propose in this paper
IScaler. IScaler is a DRL-based multi-applications resource
scaling and service placement solution capable of overcoming
the existing challenges of the dynamic environment with a
stochastic change in demands to execute efficient decisions.
Furthermore, adopting a DRL-based solution in 5G or 6G
networks is very costly because of the errors the agent can
make and the time required to learn. Thus, we propose an ISP
module, which consists of IScaler, Optimizer, and Solution
Switch. Through a series of experiments using the GCT
dataset, we illustrated the efficiency of ISP decisions in (1)
performing proactive intelligent multi-application scaling and
placement decisions, (2) using the Optimizer during IScaler’s
model changes, and (3) demonstrating the ability of IScaler to
outperform existing model-based scaling solutions.

REFERENCES

[1] R. Vannithamby and S. Talwar, Towards 5G: Applications, requirements
and candidate technologies. John Wiley & Sons, 2017.

[2] W. Saad, M. Bennis, and M. Chen, “A vision of 6g wireless systems:
Applications, trends, technologies, and open research problems,” IEEE
network, vol. 34, no. 3, pp. 134–142, 2019.

[3] H. Yang, A. Alphones, Z. Xiong, D. Niyato, J. Zhao, and K. Wu,
“Artificial-intelligence-enabled intelligent 6g networks,” IEEE Network,
vol. 34, no. 6, pp. 272–280, 2020.

[4] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey
on mobile edge computing: The communication perspective,” IEEE
Communications Surveys & Tutorials, vol. 19, no. 4, pp. 2322–2358,
2017.

[5] J. Cao, W. Feng, N. Ge, and J. Lu, “Delay characterization of mobile
edge computing for 6g time-sensitive services,” IEEE Internet of Things
Journal, 2020.

[6] H. Sami and A. Mourad, “Dynamic on-demand fog formation offering
on-the-fly iot service deployment,” IEEE Transactions on Network and
Service Management, 2020.

[7] L. Gavrilovska, V. Rakovic, and D. Denkovski, “Aspects of resource
scaling in 5g-mec: Technologies and opportunities,” in 2018 IEEE
Globecom Workshops (GC Wkshps). IEEE, 2018, pp. 1–6.

[8] M. Giordani, M. Polese, M. Mezzavilla, S. Rangan, and M. Zorzi, “To-
ward 6g networks: Use cases and technologies,” IEEE Communications
Magazine, vol. 58, no. 3, pp. 55–61, 2020.

[9] H. A. Alameddine, S. Sharafeddine, S. Sebbah, S. Ayoubi, and C. Assi,
“Dynamic task offloading and scheduling for low-latency iot services
in multi-access edge computing,” IEEE Journal on Selected Areas in
Communications, vol. 37, no. 3, pp. 668–682, 2019.

[10] I. Afolabi, T. Taleb, K. Samdanis, A. Ksentini, and H. Flinck, “Network
slicing and softwarization: A survey on principles, enabling technolo-
gies, and solutions,” IEEE Communications Surveys & Tutorials, vol. 20,
no. 3, pp. 2429–2453, 2018.

[11] S. A. Rahman, A. Mourad, M. El Barachi, and W. Al Orabi, “A novel on-
demand vehicular sensing framework for traffic condition monitoring,”
Vehicular Communications, vol. 12, pp. 165–178, 2018.

[12] N. Moati, H. Otrok, A. Mourad, and J.-M. Robert, “Reputation-based
cooperative detection model of selfish nodes in cluster-based qos-olsr
protocol,” Wireless personal communications, vol. 75, no. 3, pp. 1747–
1768, 2014.

[13] A. A. Abdallah, S. S. Saab, and Z. M. Kassas, “A machine learning
approach for localization in cellular environments,” in 2018 IEEE/ION
Position, Location and Navigation Symposium (PLANS), 2018, pp.
1223–1227.

[14] W. Fawaz, R. Atallah, C. Assi, and M. Khabbaz, “Unmanned aerial
vehicles as store-carry-forward nodes for vehicular networks,” IEEE
Access, vol. 5, pp. 23 710–23 718, 2017.

[15] W. Fawaz, “Effect of non-cooperative vehicles on path connectivity
in vehicular networks: A theoretical analysis and uav-based remedy,”
Vehicular Communications, vol. 11, pp. 12–19, 2018.

[16] D. Vohra, Kubernetes microservices with Docker. Apress, 2016.
[17] D. M. Gutierrez-Estevez, M. Gramaglia, A. De Domenico, N. Di Pietro,

S. Khatibi, K. Shah, D. Tsolkas, P. Arnold, and P. Serrano, “The
path towards resource elasticity for 5g network architecture,” in 2018
IEEE Wireless Communications and Networking Conference Workshops
(WCNCW). IEEE, 2018, pp. 214–219.

[18] F. Rossi, V. Cardellini, F. L. Presti, and M. Nardelli, “Geo-distributed
efficient deployment of containers with kubernetes,” Computer Commu-
nications, 2020.

[19] J. B. Benifa and D. Dejey, “Rlpas: Reinforcement learning-based proac-
tive auto-scaler for resource provisioning in cloud environment,” Mobile
Networks and Applications, vol. 24, no. 4, pp. 1348–1363, 2019.

[20] N. Kherraf, H. A. Alameddine, S. Sharafeddine, C. M. Assi, and
A. Ghrayeb, “Optimized provisioning of edge computing resources with
heterogeneous workload in iot networks,” IEEE Transactions on Network
and Service Management, vol. 16, no. 2, pp. 459–474, 2019.

[21] H. Mao, M. Alizadeh, I. Menache, and S. Kandula, “Resource man-
agement with deep reinforcement learning,” in Proceedings of the 15th
ACM Workshop on Hot Topics in Networks, 2016, pp. 50–56.

[22] K. B. Letaief, W. Chen, Y. Shi, J. Zhang, and Y.-J. A. Zhang, “The
roadmap to 6g: Ai empowered wireless networks,” IEEE Communica-
tions Magazine, vol. 57, no. 8, pp. 84–90, 2019.

[23] C. Bitsakos, I. Konstantinou, and N. Koziris, “Derp: A deep reinforce-
ment learning cloud system for elastic resource provisioning,” in 2018
IEEE International Conference on Cloud Computing Technology and
Science (CloudCom). IEEE, 2018, pp. 21–29.

[24] H. Arabnejad, C. Pahl, P. Jamshidi, and G. Estrada, “A comparison of
reinforcement learning techniques for fuzzy cloud auto-scaling,” in 2017
17th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGRID). IEEE, 2017, pp. 64–73.

[25] H. Sami, A. Mourad, H. Otrok, and J. Bentahar, “Fscaler: Automatic
resource scaling of containers in fog clusters using reinforcement

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on June 25,2021 at 07:34:24 UTC from IEEE Xplore. Restrictions apply.

1932-4537 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2021.3066625, IEEE
Transactions on Network and Service Management

14

learning,” in 2020 International Wireless Communications and Mobile
Computing (IWCMC). IEEE, 2020, pp. 1824–1829.

[26] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, and
J. Wilkes, “Large-scale cluster management at google with borg,” in
Proceedings of the Tenth European Conference on Computer Systems,
2015, pp. 1–17.

[27] J. Kumar, A. K. Singh, and R. Buyya, “Self directed learning based
workload forecasting model for cloud resource management,” Informa-
tion Sciences, vol. 543, pp. 345–366, 2020.

[28] I. K. Kim, W. Wang, Y. Qi, and M. Humphrey, “Forecasting cloud appli-
cation workloads with cloudinsight for predictive resource management,”
IEEE Transactions on Cloud Computing, 2020.

[29] Z. A. Al-Sharif, Y. Jararweh, A. Al-Dahoud, and L. M. Alawneh, “Accrs:
autonomic based cloud computing resource scaling,” Cluster Computing,
vol. 20, no. 3, pp. 2479–2488, 2017.

[30] C. Li, H. Sun, Y. Chen, and Y. Luo, “Edge cloud resource expansion
and shrinkage based on workload for minimizing the cost,” Future
Generation Computer Systems, vol. 101, pp. 327–340, 2019.

[31] M. Scarpiniti, E. Baccarelli, P. G. V. Naranjo, and A. Uncini, “Energy
performance of heuristics and meta-heuristics for real-time joint resource
scaling and consolidation in virtualized networked data centers,” The
Journal of Supercomputing, vol. 74, no. 5, pp. 2161–2198, 2018.

[32] N. C. Luong, D. T. Hoang, S. Gong, D. Niyato, P. Wang, Y.-C.
Liang, and D. I. Kim, “Applications of deep reinforcement learning
in communications and networking: A survey,” IEEE Communications
Surveys & Tutorials, vol. 21, no. 4, pp. 3133–3174, 2019.

[33] R. Li, Z. Zhao, Q. Sun, I. Chih-Lin, C. Yang, X. Chen, M. Zhao, and
H. Zhang, “Deep reinforcement learning for resource management in
network slicing,” IEEE Access, vol. 6, pp. 74 429–74 441, 2018.

[34] Y. Z. Helin Yang, Z. Xiong, J. Zhao, D. Niyato, K.-Y. Lam, and Q. Wu,
“Deep reinforcement learning based intelligent reflecting surface for
secure wireless communications.”

[35] A. Sadeghi, F. Sheikholeslami, and G. B. Giannakis, “Optimal and
scalable caching for 5g using reinforcement learning of space-time
popularities,” IEEE Journal of Selected Topics in Signal Processing,
vol. 12, no. 1, pp. 180–190, 2017.

[36] P. Farhat, H. Sami, and A. Mourad, “Reinforcement r-learning model
for time scheduling of on-demand fog placement,” The Journal of
Supercomputing, vol. 76, no. 1, pp. 388–410, 2020.

[37] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement
learning: A survey,” Journal of artificial intelligence research, vol. 4,
pp. 237–285, 1996.

[38] X. Xu, L. Zuo, and Z. Huang, “Reinforcement learning algorithms with
function approximation: Recent advances and applications,” Information
Sciences, vol. 261, pp. 1–31, 2014.

[39] S. S. Saab and D. Shen, “Multidimensional gains for stochastic approx-
imation,” IEEE transactions on neural networks and learning systems,
vol. 31, no. 5, pp. 1602–1615, 2019.

[40] G. Tesauro, “Temporal difference learning and td-gammon,” Communi-
cations of the ACM, vol. 38, no. 3, pp. 58–68, 1995.

[41] H. Sami, A. Mourad, and W. El-Hajj, “Vehicular-obus-as-on-demand-
fogs: Resource and context aware deployment of containerized micro-
services,” IEEE/ACM Transactions on Networking, vol. 28, no. 2, pp.
778–790, 2020.

[42] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: A system for large-
scale machine learning,” in 12th {USENIX} symposium on operating
systems design and implementation ({OSDI} 16), 2016, pp. 265–283.

Hani Sami is currently pursuing his Ph.D. at Con-
cordia University, Institute for information Systems
Engineering (CIISE). He received his M.Sc. degree
in Computer Science from the American University
of Beirut and completed his B.S. and worked as
Research Assistant at the Lebanese American Uni-
versity. The topics of his research are Fog Comput-
ing, Vehicular Fog Computing, and Reinforcement
Learning. He is a reviewer of several prestigious
conferences and journals.

Hadi Otrok holds an associate professor position
in the department of Electrical Engineering and
Computer Science (EECS) at Khalifa University
of Science and Technology, an affiliate associate
professor in the Concordia Institute for Information
Systems Engineering at Concordia University, Mon-
treal, Canada, and an affiliate associate professor in
the electrical department at Ecole de Technologie
Superieure (ETS), Montreal, Canada. He received
his Ph.D. in ECE from Concordia University. He is
a senior member at IEEE, and associate editor at:

IEEE TNSM, Ad-hoc networks (Elsevier), and IEEE Network. He served
as associate editor at IEEE communications letters. He co-chaired several
committees at various IEEE conferences. His research interests include:
Blockchain, reinforcement learning, Federated Learning, crowd sensing and
sourcing, ad hoc networks, and cloud and fog security.

Jamal Bentahar received the Ph.D. degree in com-
puter science and software engineering from Laval
University, Canada, in 2005. He is a Professor with
Concordia Institute for Information Systems Engi-
neering, Concordia University, Canada. From 2005
to 2006, he was a Postdoctoral Fellow with Laval
University, and then NSERC Postdoctoral Fellow at
Simon Fraser University, Canada. He is an NSERC
Co-Chair for Discovery Grant for Computer Science
(2016-2018). His research interests include the areas
of computational logics, model checking, multi-

agent systems, service computing, game theory, and software engineering.

Azzam Mourad received his M.Sc. in CS from
Laval University, Canada (2003) and Ph.D. in ECE
from Concordia University, Canada (2008). He is
currently an associate professor of computer sci-
ence with the Lebanese American University and
an affiliate associate professor with the Software
Engineering and IT Department, Ecole de Tech-
nologie Superieure (ETS), Montreal, Canada. He
published more than 100 papers in international jour-
nal and conferences on Security, Network and Ser-
vice Optimization and Management targeting IoT,

Cloud/Fog/Edge Computing, Vehicular and Mobile Networks, and Federated
Learning. He has served/serves as an associate editor for IEEE Transaction
on Network and Service Management, IEEE Network, IEEE Open Journal
of the Communications Society, IET Quantum Communication, and IEEE
Communications Letters, the General Chair of IWCMC2020, the General Co-
Chair of WiMob2016, and the Track Chair, a TPC member, and a reviewer for
several prestigious journals and conferences. He is an IEEE senior member.

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on June 25,2021 at 07:34:24 UTC from IEEE Xplore. Restrictions apply.

