
1939-1374 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2021.3075988, IEEE
Transactions on Services Computing

1

Demand-Driven Deep Reinforcement Learning
for Scalable Fog and Service Placement

Hani Sami∗, Azzam Mourad†, Hadi Otrok‡, Jamal Bentahar∗
∗Concordia Institute for Information Systems Engineering, Concordia University, Montreal, Canada
†Department of Computer science and Mathematics, Lebanese American University, Beirut, Lebanon
‡Center of Cyber-Physical Systems (C2PS), Department of EECS, Khalifa University, Abu Dhabi, UAE

Abstract—The increasing number of Internet of Things (IoT) devices
necessitates the need for a more substantial fog computing infrastruc-
ture to support the users’ demand for services. In this context, the
placement problem consists of selecting fog resources and mapping
services to these resources. This problem is particularly challenging
due to the dynamic changes in both users’ demand and available
fog resources. Existing solutions utilize on-demand fog formation and
periodic container placement using heuristics due to the NP-hardness
of the problem. Unfortunately, constant updates of services are time
consuming in terms of environment setup, especially when required
services and available fog nodes are changing. Therefore, due to the
need for fast and proactive service updates to meet users’ demand,
and the complexity of the container placement problem, we propose
in this paper a Deep Reinforcement Learning (DRL) solution, named
Intelligent Fog and Service Placement (IFSP), to perform instanta-
neous placement decisions proactively. By proactively, we mean making
placement decisions before demands occur. The DRL-based IFSP is
developed through a scalable Markov Decision Process (MDP) design.
To address the long learning time for DRL to converge, and the high
volume of errors needed to explore, we also propose a novel end-to-
end architecture utilizing a service scheduler and a bootstrapper. on the
cloud. Our scheduler and bootstrapper perform offline learning on users’
demand recorded in server logs. Through experiments and simulations
performed on the NASA server logs and Google Cluster Trace datasets,
we explore the ability of IFSP to perform efficient placement and over-
come the above mentioned DRL limitations. We also show the ability of
IFSP to adapt to changes in the environment and improve the Quality of
Service (QoS) compared to state-of-the-art-heuristic and DRL solutions.

Index Terms—Fog Computing, Deep Reinforcement Learning (DRL),
Internet of Things (IoT), On-Demand Fog Placement, Boostraper.

1 INTRODUCTION

1.1 Background
The rise in the number of connected things or IoT devices
is accompanied by an increase in the demand for cloud
services [1]. Due to transmission delay on the cloud and
the possibility of network congestion, the fog computing
concept was invented as a solution. Fog nodes extend the
cloud by hosting services closer to IoT devices [2]. In this
context, service providers are limited to hosting a limited
number of services on fog nodes due to the small number of
available resources [3] [4]. In existing fog solutions, services
are pre-installed on fogs to serve only specific applications
[5]. Thus, fog resources are not fully optimized to update
or host new services. As a solution to this problem, we
proposed in our previous work the formation of on-demand

fog clusters by utilizing volunteering devices to host the
fog services [6]. On-demand fog formation provides the
flexibility to re-utilize resources by replacing idle or less
requested services on the fly with new ones. The flexibility
of dynamically pushing lightweight services on various
types of operating systems is achieved using the Docker
containerization technology [7]. In addition, orchestration
technologies are applied on cluster heads like Kubernetes
[8] for management purposes. Dynamic formation of on-
demand fog clusters introduces the service placement prob-
lem. This problem is divided into fog selection and service
assignment or placement. Fog selection entails choosing
the best fog from a set of available ones, whereas service
placement is the action of assigning services to selected
fogs. In the sequel, we provide a use case to illustrate the
main requirements of the service placement problem, and
then we highlight the limitations of existing solutions in the
literature.

1.2 Motivational Use Case

We consider the use case of a road with groups of au-
tonomous vehicles performing self-driving, in addition to
unmanned aerial vehicles (UAVs). Drivers and passengers
are requesting different types of services using existing net-
work protocols [9]. In particular, some drivers are requesting
a service to retrieve real-time traffic information [10]. A
smart vehicle is requesting services to collect more sensed
data from vehicles around to improve its driving decisions
[11]. Furthermore, the UAVs are requesting network man-
agement services [12], [13]. The passengers from their sides
are interested in infotainment-related services such as video
streaming and playing video games. Due to the limited
computing resources on On-Boarding Units of the vehicles,
on-demand fog computing is employed to improve the QoS
experienced by the requesters. In this case, the fog com-
puting cluster is initialized on volunteering edge servers,
such as the Road Side Units (RSUs). In the on-demand fog
context, services are not always lightweight. For example,
downloading a guest operating system for hosting the traffic
measurement service takes time. Besides, initializing the
Kubernetes cluster and downloading the required modules
are also time-consuming. In addition, the moving vehicles
and UAVs can leave the range of the serving RSU, leading
to networking delays and reachability issues. In order to
overcome this problem, proactive placement is required.

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on June 25,2021 at 07:18:36 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2021.3075988, IEEE
Transactions on Services Computing

2

Proactive placement can be performed by predicting the
pattern of demands on each road by the RSUs. Furthermore,
vehicles send different volumes of requests for services.
Hence, a dynamic placement of services on the nearest RSU
is required to meet the users’ demand. Besides, the number
of available resources running on the RSUs is changing due
to other independent applications. Hence, the demands and
available resources should be predicted to perform optimal
placement.

1.3 Motivations and Challenges

As proved in [14], the placement problem is NP-hard be-
cause of the multiple contradicting objectives. In our pre-
vious work [14] and [15], we proposed a solution to the
problem using a Memetic Algorithm (MA). Despite the
heuristic solution’s ability to produce feasible decisions, it
still suffers from two main limitations:

1) The chances for heuristic algorithms to diverge increase
as the input to the problem increases and, therefore, the
number of possible solutions increases [14].

2) The heuristic-based solution does not provide an in-
telligent model capable of considering the change in
demands for proactive decisions.

Alternatively, a breakthrough in Reinforcement Learning
(RL) has been witnessed after introducing the Deep Re-
inforcement Learning (DRL) algorithms. The Deep Q-
Network (DQN) algorithm is an efficient DRL solution that
achieves high degree non-linear function approximation.
Subsequently, DRL is becoming the core solution for several
resource management and networking-related problems,
compelling intelligent decisions which usually require hu-
man intervention. Thus, there is a potential in using DQN
in the context of fogs selection, service placement, and
demand analysis. However, using DRL as a solution still
suffers from two main limitations, which affect applications
that are time-sensitive and cannot tolerate faults. These two
limitations are:

1) The RL exploration technique causes a high volume of
errors at the first stages of learning. This behavior is
not tolerable in our service placement problem because
it directly affects the QoS experienced by the users.

2) The long learning time for DRL agents makes it inad-
equate for dynamically changing environments where
an agent has to adapt to changes swiftly.

1.4 Proposed Approach and Contributions

To address the aforementioned problems related to heuris-
tics and the use of DRL for placement, we present in this
paper a new scheme utilizing the on-demand fog formation
technologies. We present an end-to-end architecture relying
on the cloud to perform offline learning. This is achieved
by incorporating an Intelligent Fog Service Scheduler (IFSS)
and an Intelligent Fog Service Placement (IFSP) on the
cloud. IFSS is built using an R-Learning algorithm proposed
in [16], which decides on the right time and location where
an environment change happens. IFSS is then responsible
for triggering IFSP, formulated using DQN, to build the
intelligent service placement by receiving data from the
cloud server logs. This process is called Bootstrapping. A

mature or tuned IFSP model is then pushed to the target
fog cluster. Our IFSP then executes online updates on the
orchestrator to keep our agent up-to-date with the incoming
demand of each service. Benefiting from the integrated load-
balancing feature in the Kubernetes orchestration tool, the
clusters can scale computing resources automatically when
the volume of requests increases and more computation is
required.

Building our IFSP requires defining the Markov Decision
Process (MDP) components, which are the states, actions,
and cost function. Given the change in the services to place,
the available resources, the demand for services, and the
need for handling large inputs, we present in this work a
scalable MDP design for our problem. This design allows
the agent to make proactive placement decisions, match
the demand of users, and meet the fog environment’s re-
quirements. Using our MDP design, we exploit the use of
DQN to build our IFSP agent. Using IFSP, we are able
to demonstrate the high utility of the decision made, the
power of improving intelligent decisions by adapting to
unexpected changes in the environment, and the superiority
over the state-of-the-art heuristic solutions. To the best of
our knowledge, our work is the first to solve the service
placement problem in the fog computing context using DRL.

The contributions of this work are as follows:

• We propose a complete end-to-end architecture ben-
efiting from the on-demand formation approach and
introducing the IFSS scheduler and IFSP bootstrap-
per. This solution avoids the exploration errors and
long learning time required by DRL algorithms.

• We present a novel MDP design to build the IFSP
agent that respects the change in demand and avail-
able resources and takes optimal placement decisions
based on the fog environment requirements.

• We exploit the use of DQN to build the IFSP
agent. Experiments conducted using real-life datasets
demonstrate the ability of IFSP to make efficient and
proactive decisions, adapt to changing demand and
cost parameters in the environment, and outperform
existing heuristic solutions.

The rest of this paper is organized as follows. Section
2 presents the problem statement. In Section 3, we discuss
recent literature work related to our context and the use of
AI. Section 4 introduces the proposed architecture enabling
the use of DRL. An MDP formulation of our problem is in-
troduced in Section 7. Section 6 is dedicated to demonstrate
the implemented DQN algorithm utilizing the formulated
MDP. In Section 7, we provide a series of experiments for
validating the use of our solution. We finally conclude the
paper with future directions in Section 8.

2 PROBLEM STATEMENT

Users request a set of different services from the cloud
using their smart devices. As shown in Fig. 1, these requests
arrive from different locations with different volumes. As-
suming that five services are initially running on the cloud
{S1, S2, . . . , S5}, each represented by a different color in
the figure, the cloud can become overloaded with tons
of requests. Subsequently, users start complaining because

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on June 25,2021 at 07:18:36 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2021.3075988, IEEE
Transactions on Services Computing

3

Fig. 1: An Illustration of the Service Placement Problem on Fog
Clusters

of the embarrassing QoS caused by transmission delay or
high load on the cloud servers. Thereafter, fogs are used
to overcome these issues by running close to users with
acceptable performance. As illustrated in the figure, the
cloud makes scheduling decisions on a set of services that
need to be placed near users. Following the approach in
[16], the placement request is received by the master of the
fog cluster. One of the master’s tasks is to distribute these
services on its fogs in a way that enhances the QoS level ex-
perienced by the users and preserves the fog requirements.
For instance, these services should be as close as possible to
users requesting them. Every fog has a coverage area users
can reach. Therefore, fogs should serve users present within
their range. In Fig. 1, Fog 1.1, serving Area 1.1, can only host
S1 and S2 because of the limitation of its resources. In this
subarea, a user is requesting service S3 (green); however,
it’s not hosted by Fog 1.1. Therefore, this user is still served
by the cloud. Because of the fog servers resource limitation
inside their Kuberenetes cluster, solving the problem of fog
selection and service distribution is of immense importance.
In addition, the demands of services coming from users to
fogs change over time. For instance, in Area 1.2, Fog 1.2
is hosting S3 and S4. If the demands for S1 gets higher
than S4, the fog has to switch these services to start serving
S1 to achieve a better QoS. The demands are only one
objective that the master has to satisfy when adjusting the
placements. Other objectives have to be considered. For
example, minimizing the distance between the serving fog
and the user, maximizing the number of services pushed
having a higher priority, and minimizing the number of
hosts for lighter orchestration. These objectives are essential
to consider when making selection and placement decisions.

The service placement and fog selection problem is NP-
hard and requires at least a heuristic solution to solve it
[14]. For instance, genetic algorithms use randomness to
build populations, evaluate the solutions’ fitness value, and

evolve the pareto front. Thus, there is no single solution
to the problem, especially when the input grows due to
the hardness of reaching the optimal decision [14]. In other
words, heuristic solutions are not always guaranteed to
make acceptable decisions, affecting the quality of decisions
made in critical situations. Furthermore, our problem re-
quires studying users’ demand of services so that services
with high demand are prioritized for placement. Such a
demand needs to be predicted in order for the model to react
proactively by placing services before the demand occurs,
and therefore eliminating the overhead of initializing fogs,
migrating, and starting services. Proactive decision making
is not feasible when using heuristics because of the lack of
prediction model that can adapt to the stochastic change in
demand for different services and from different locations.

In summary, the main limitations of using heuristics is
the possibility of diverging from the optimal solution with
an increase in the running time as the input size to the
problem grows, and the lack of a prediction model that
can study the change in the users demand for services.
In order to overcome these limitations, we propose in the
paper the use of DRL by modeling the selection and place-
ment problem as MDP, providing a solution that guarantees
scalable, proactive, and optimal decision making. The use
of DRL is made feasible through a proposed architecture
that introduced intelligent scheduling and bootstrapping to
avoid (1) the long learning time, and (2) the high volume of
mistakes at the exploration stage of learning.

3 RELATED WORK

In this section, we highlight the most recent literature pro-
posals which provide a solution to the placement problem
using a heuristic. We then overview existing limitations in
RL solutions for similar problems. Finally, we brief on the
breakthrough of DRL in networking and resource manage-
ment. Table 1 compares the features of existing solutions
with IFSP.

3.1 Service Placement Using Heuristics

Existing efforts have proposed the use of heuristics as
a solution for the fog’s service placement problem. For
instance, in our previous work [14], [15], we utilized the
evolutionary MA to solve this problem in both static loca-
tion and vehicular contexts. In [29], authors using mixed
integer programming to solve the resource provisioning
problem on MEC. Furthermore, researchers in [19] proposed
to scale fog resources horizontally and vertically using re-
inforcement learning. In their work, service placement of
scaled instances is similar to our problem, except that the
authors in [19] addressed the placement for only one type
of container and used linear integer programming to solve
it. More generally, service placement applies in different
contexts using different technologies where authors always
use heuristics to reach near-optimal placement decisions.
For instance, the authors in [21] use heuristics to solve
Virtual Machine (VM) placement on the cloud, whereas in
[23], [20], and [24], heuristic algorithms are used to place
services on edge servers to support different types of users
including vehicular systems.

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on June 25,2021 at 07:18:36 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2021.3075988, IEEE
Transactions on Services Computing

4

TABLE 1: Table of Comparison Between Latest Service Placement Solutions and IFSP

Solution
Dynamic Update
(Services/cache) Service Placement Proactive Bootstrapper Scheduler On-Demand Scalable

Supports
Mobility

Supports
Multi-Services

IFSP X X X X X X X - X
[17] X X X - - X - - X
[18] X X - - - - X X X
[14] - X - - - X - - X
[15] - X - - - X - X X

[19], [20] - X - - - - - - -
[21], [22] - X - - - - - - X
[23], [24] - X - - - - - X X

[25] X - - - - - - - -
[26] - X - - - - - - -

[27], [28] X X - - - - X - -

Service placement, that includes server selection, is also
a well-known problem in the cloud environment. In such
a context, services run inside VMs to be placed on cloud
servers. The objectives for cloud-service placement prob-
lems are different than those of fog contexts, but the problem
formulation and solution used can be mapped. The solution
used for performing VM placement is through heuristics
[22]. Thus, our solution can generalize to VM placement in
the cloud environment. There are also other service manage-
ment problems on the cloud layer including service compo-
sition and selection for energy minimization on datacenters.
Solutions for these problems can be improved using DRL
or by extending our solution to consider user requirements
and energy activities within datacenters [30], [31].

3.2 Limitations of Existing MDP Designs

A common structure of papers that use reinforcement learn-
ing to solve their problem is by formulating it as Markov
Decision Process (MDP). One of the main challenges for
solving a problem using RL is to provide a scalable MDP
design that guarantees convergence to ensure making the
optimal decisions. Furthermore, the action space should be
manageable by the computing machine memory when the
input to the problem grows. Thus, a reduction in the size of
the action space by design is highly desirable.

In [25], RL linear function approximation is used to
decide on caching files on 5G base stations. The MDP
design provided by the authors seems promising to be refor-
mulated for solving our selection and placement problem.
However, after following this formulation and increasing
the input size, the action space can grow exponentially,
which is not practical. The design proposed in [25] is
adapted by other researchers performing similar tasks, such
as [26]. In [26], distributed caching is applied in the wireless
network. Nonetheless, their action space is a combination
of sub-caching actions subject to infinite growth. Further-
more, different solutions that consider caching do not apply
directly to the context of service placement where modifi-
cations of objectives, constraints, and MDP design are re-
quired. For instance, the state and action spaces must reflect
the scaling operations, and the cost function should consider
the cost of resources used when scaling. For simplicity, we
rely on the Kubernetes master node to perform automatic
scaling, which is part of its functionalities.

3.3 Deep Reinforcement Learning Advancement
After the proven success of RL in many fields, it has been
adopted to solve challenging problems in the context of fog
computing, such as network and resource management [32],
[33]. In addition, the work in [17] proposes service migration
at the edge to support cognitive computing. The MDP
design suffers from scalability issues in terms of the action
space, as well as a limitation of using a tabular Q-learning,
making it hard to scale to large input spaces. Furthermore,
the work does not study the change in available resources
in order to perform proactive placement. Similarly, the
proposal in [18] introduces an MDP design for container
migration where the action space increases exponentially as
the number of possible placements and size of the input
increase. Besides, [17] and [18] do not consider the cost of
training the RL agent, which is important in error sensitive
environments. Researchers decide on the type of RL algo-
rithm to use based on the dynamics of their environment
and the formulated model. In the context of fog computing,
authors in [27] use RL to provide a joint solution for caching,
computation offloading, and radio resource allocation us-
ing the actor-critic approximation algorithm. Another work
proposes a dynamic load balancing of loads on neighboring
fogs using RL [34]. The agent runs on the SDN fog controller
who decides to offload tasks between fogs and clouds based
on the current demands/loads measured by the controller.
The end goal is to minimize the execution time, where a
model-free Q-learning algorithm is used.

Deep Q-Network (DQN) is a model-free off-policy RL
algorithm. DQN is the first success to merge the concepts
of RL and supervised Deep Learning (DL) in the video
games [35], which is then proven to excel as a solution to
several cloud and fog networking, caching, and resource
management related problems [27], [28]. In this paper, we
build our selection and placement agent, namely IFSP, using
a DQN algorithm which surpasses the performance of other
model-free RL algorithms for our problem. To the best of our
knowledge, our work is the first to solve the fog selection
and service placement problem using DRL.

4 PROPOSED ARCHITECTURE REALIZING DRL
In this section, we elaborate on a proposed architecture
tailored to enable the use of DRL to solve our service place-
ment and fog selection problem. This architecture ensures a
complete end-to-end intelligent and automated solution for
service placement and fog selection to improve QoS. A pre-
sentation of the architecture and components interactions is

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on June 25,2021 at 07:18:36 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2021.3075988, IEEE
Transactions on Services Computing

5

Fig. 2: Proposed Architecture Realizing DRL

depicted in Fig. 2. The two core layers of our architecture
are the cloud and fog layers.
In this architecture, users can be any IoT devices. As shown

in Fig. 2, users start by requesting services from the cloud.
Applications on the cloud are hosted inside computing
engines that are dedicated to hosting the back-end logic
of the applications. Every application has a logging logic
that keeps track of connected users, the source IP, and the
requested APIs or services. These logs keep on updating,
which means that new demands will always be taken into
consideration while our models are learning. Our proposed
architecture will then fully rely on these logs as a source
of data to learn and make decisions. These data are then
utilized by IFSS (Intelligent Fog Service Scheduler) and
Bootsrapper, which are two intelligent components running
two different reinforcement learning algorithms.

The IFSS agent runs an R-Learning algorithm that uses
an MDP formulation for deciding about the best time and
place for pushing services to fogs. IFSS was modeled and
implemented in our previous work [16]. IFSS learns from
the server logs the different demands of users divided by
location and based on the time of the day. The decision of
the IFSS scheduler is proactive, which means a decision for
placing a service is taken before the actual demands occur.
The bootstrapper then receives the scheduling decision by
the IFSS agent, which contains the list of locations, each
having a list of services to place for the given time. The
Bootstrapper on the cloud runs a DRL algorithm that takes
as input a state built using the services to be placed, the fogs
available in the target location, and the changing demands
of users over time retrieved from the server logs. The MDP
for the agent is discussed in Section 4. In contrast, the DRL
algorithm is presented in Section 7. The primary purpose of

this model is to perform offline learning on all the demands
captured in the log files using the DRL algorithm. This
model is then considered as a bootstrapping for the IFSP
(Intelligent Fog Service Placement) running on the master,
which performs online learning. IFSP will receive a mature
model and avoid the long learning time and errors the
model yields at the first stages of learning.

The Fog Broker is responsible for managing all the
communication between the cloud and the set of master
nodes available anywhere. The Fog Broker is the gateway
of the cloud to the Internet. It is horizontally scalable, keeps
track of all available master nodes, and ensures reliable
connections. The broker also reaches periodically to all the
master nodes of the different clusters about their available
fog nodes, the resources capacity, and the geographical loca-
tions of each. The Bootstrapper then utilizes this information
as a requirement for the model to start offline learning. Once
the Bootstrapper finishes modeling the environment and
builds the DRL agent by achieving convergence, it forwards
this model using the Fog Broker to the master node.

The fog layer consists of the fog clusters, each having
a master node responsible for orchestrating fogs and man-
aging the running services on each one. Each master node
contains an IFSP and the Kubernetes required model for
creating and maintaining a fog cluster which relies on the
containerization technology. The master expects the broker’s
requests, which contain the new IFSP model to be adapted
in its cluster. The received model is mature, and the master
can rely on to make selection and placement decisions.
Because user demands are stochastic, the master will also
run an online update for each decision made. Using the Ku-
bernetes model, the master has knowledge of the demands
for services on each fog and how it changes over time. This
information is fed for the IFSP for the online updates. Kuber-
netes is also used to take the actions generated by decisions
from the IFSP including placing and updating containers on
available fogs. Fog nodes will be able to run services that
are of best use for users and therefore improving the QoS
of the applications. Thus, users will migrate their requests
from the cloud to available fogs.

5 IFSP MODELING

Following our proposed model, IFSP can be used in fog
clusters with confidence that the deployed model online will
act maturely and keep on improving itself as new demands
are measured. In this section, we present a novel MDP
model that is capable of taking the selection and placement
decisions proactively, takes into account the changing de-
mands per service, considers four contradicting objectives,
and is scalable, which means it can model hundreds of fogs
and containers as input.

5.1 Background

MDP is a mathematical framework for modeling sequen-
tial decision making in stochastic environments. An MDP
is characterized by the following tuple: (S,A,Pr, C, γ).
S is the set of states that the agent can be at, where
S = {s1, s2, . . . }. A = {a1, a2, . . . } is the action space or
the set of possible actions that can be taken by the agent

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on June 25,2021 at 07:18:36 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2021.3075988, IEEE
Transactions on Services Computing

6

at each step. Pr is the probability transition matrix or the
probability distribution over the successor states s′ after
taking an action in A. In case Pr is known, the agent then
has a model of the environment. In most cases, Pr is not
given and the use of model-free RL is essential to obtain a
model of the environment. C is the cost function designed to
measure how well the agent is doing after taking an action
from A at a state s and moving to a state s′. Finally, γ is a
decimal value from [0, 1]. The value of γ is usually close to
one. γ is used to help the model converge by discounting
over the rewards of the next states. In other words, γ tells
how much the agent cares about the reward of the future
states. In order to model our problem as MDP, we need to
define S,A,Pr, C, and γ.

5.2 States and Actions Modeling
The decision taken by the IFSP agent takes place at dif-
ferent time moments t, where t = 1, 2, Let F =
{F1, F2, . . . , Fm} be the list of m fogs, where each fog has
a list of available CPU, memory, disk, and geographical
distance from the user. A fog Fi in the cluster can be rep-
resented as a vector Fi = [Ficpu , Fimem

, Fidisk , Fid], where
Fid is the mean of distances between the location of each
user in a target area and the fog location. In other words,
Fid measures the proximity of Fi to requesting users in the
area. Let P = {P1, P2, . . . , Pn} be the set of n containers
to place. Each service Pj has resources requirements and a
priority value indicating that this service should be prior-
itized for placement to maintain a certain level of QoS. A
service Pj has the following requirements for deployment
Pj = [Pjcpu , Pjmem

, Pjdisk , Pjk], where Pjk is the priority of
service Pj having a value of either zero for low priority or
one for high priority.

Let q(t) be the vector of normalized number of requests
for every service in P . An element in q(t) for service Pj is
denoted by [q(t)]Pj

and is calculated as follows:

[q(t)]Pj
=

Number of requests for service Pj at time t
Total number of requests for all services in P at t

(1)
The placement decision is taken sequentially for each con-
tainer per state at a time. The combined placement decision
denoted by k(t) at t is a binary matrix of size m× n, where
k(t)ij = 1 means that Pj is placed on Fi, and 0 otherwise.
Furthermore, a counter u is used to indicate the current
container Pu the agent is taking the decision for, such that
u ∈ {1, . . . , n}. After making n decisions, the counter is
reset to one. Henceforth, the state of our model is:

s(t, u) = [q(t), k(t), u] (2)

Selecting an action from the set of possible actions A
in our MDP allows the agent to take a placement decision
for the current container Pu. The possibilities in A are (1)
selecting a fog from F ; (2) selecting a container from P ;
or (3) doing nothing. In case a fog is selected, the action
performed is to place Pu on this fog. On the other hand, in
case a container is selected, this container is removed from
it’s current running fog and replaced by Pu. Mathematically,
A = {0, f1, f2, . . . , fm, p1, p2, . . . , pn}, where zero means
that container Pu is not assigned to any fog, fi means the
fog Fi is selected for placement, and pj means an already

Fig. 3: The Evolution of the Main Quantities Used for Cost
Calculation over Time

placed service Pj is unplaced from its fog and replaced by
the service Pu. We also denote by a(t) a typical element of
A at t. It is important to emphasize that the list of services
for replacement in the action space are the ones that were
placed in previous time-steps. This list of services can be
extracted from k(t). Therefore, there are some infeasible
actions which are discarded from the actions list based on
the current state. The main motivation behind considering
one container to place at a time is to make the MDP design
capable of handling large inputs, in contrast to [25] where
the action space can grow exponentially. Moreover, placing
one service at a time guarantees more availability as the
other services will keep running.

5.3 States Transition and Model Dynamics

Using Fig. 3, we elaborate in this section on the evolution
of the key quantities used to evaluate the cost function and
build the next states for the agent. In our formulation, every
episode is divided into time-steps where the agent takes
the placement decision for a single container. Consequently,
during every episode, the agent takes separate placement
decisions for each container in P . The action taken at state
s(t, u) is a(t + 1), which is a preparation for the coming
request at state s(t+ 1, u+) where u+ = u+ 1 if u ≤ n− 1
and u+ = 1 if u = n. Thus, u is incremented by 1 and reset
to 1 in case u = n. After taking the action a(t+1), k(t+1) is
extracted by updating k(t) following the action taken. The
agent then waits to observe q(t+1) to be able to calculate the
cost function C at the next state. The process of calculating
C is elaborated in the next subsection. It is important to
mention that the time difference between the time-steps is
short so that the agent will be able to update the placement
for all containers and learn different patterns of demands.
The state space grows to cover all possible combinations of
demands, resulting in more robust placement decisions.

Knowing that the loads for users’ requests on services
is unpredictable because of its stochastic nature, the design
of our formulation helps the agent predict the common se-
quence of loads by considering the load of the next episode
to calculate the cost of the combined decision for the current
episode. Because of the dynamic change in demands, we use
a model-free approach, which does not require an explicit
modeling of the environment.

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on June 25,2021 at 07:18:36 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2021.3075988, IEEE
Transactions on Services Computing

7

In case the agent is at state s(t, u) and takes action a(t+
1), the model has to represent the cost incurred by every
previous state action in order to find the optimal policy for
the new state at the next step. The calculation of the cost
incurred and the formulation of the different objectives are
presented in the forthcoming sub-section.

5.4 Cost Function
For an agent at a certain state, taking an action and moving
to the next state is evaluated by considering four contra-
dicting objectives. In this section, we elaborate on a mathe-
matical formulation for each objective. The objectives are (1)
minimizing unserved requests measured using unsatisfied
demands per service; (2) minimizing the number of fogs
selected for placement; (3) minimizing the number of not
placed services with high priority; and (4) minimizing the
distance of selected fogs from requesting users. A cost in
our formulation is represented as C(s(t − 1, u−), a(t)|q(t)),
where u− = u − 1 if u > 1 and u− = n if u = 1. In the
sequel, we present the mathematical formulation of the cost
function which is a superposition of four sub-costs.

Throughout the cost function formulation, we denote by
g(t) a 1-dimensional binary list of size n, where gj(t) = 1
means that the jth service is placed on a fog in F , and 0
otherwise. In addition, we denote by r(t) a 1-dimensional
binary list of size m, where ri(t) = 1 indicates that the fog
Fi is hosting at least one container from P . g(t) and r(t)
are extracted from k(t) for each step in an episode. For each
cost related to an objective, we assign a weight λl ∈ [0, 1]
to it such that

∑4
l=1 λl = 1. These weights are adjustable

depending on the service provider preferences, given that
the higher the weight, the more the objective has impact.

For calculating the cost of s(t − 1, u−), the first cost c1
considers the cost of not placing requested services at the
next state. The purpose of this cost is to motivate the agent to
place services that will be demanded in the next time-step.
Following this approach, the agent learns the pattern of how
the demand of services changes over time. This objective
ensures maximizing the number of satisfied requests served
by the fog cluster; hence, leading to a lower response time,
higher throughput and thus better overall QoS. This cost can
be mathematically expressed as follows:

c1 = λ1(1− g(t))ᵀq(t) (3)

Following Equation 3, 1 − g(t) results in a binary vector
with 1 indicating that the container is not placed on any fog.
Therefore, Equation 3 sums the loads (q(t)) for all unplaced
services. This cost motivates the agent to satisfy as much
demands as possible in order to minimize the cost.

The second cost, c2, ensures that services with higher
priority are considered in the placement decision in order
to maintain an acceptable QoS level for all high priority
services. High priority services do not necessarily have high
demand. c2 is then calculated using the below equation:

c2 = λ2Pᵀ
k [1− g(t)] (4)

where Pk is the vector of priority levels (0 or 1) for all
services in P . In Equation 4, we take services that are not
placed by the decision at t, and some those with high

priority. The aim for the agent is to minimize the total sum
resulted by c2.

In the third cost, c3, we aim at minimizing the distance
from selected fogs for placement and users requesting ser-
vices to be placed. This preserves a very important feature
for the fog layer, which is bringing services as close as
possible to users. Respecting this objective leads to a lower
response time experienced by users, therefore a better QoS.
This cost is calculated using the following formula:

c3 = λ3Fᵀ
dN(t) (5)

where N(t) is a vector of size m indicating the total count
of containers placed at each fog in F and Fd is the vector
of mean distances of each fog in F to the users. Thus, c3
computes the total sum of mean distances for all fogs used
times the number of containers hosted on each. The end goal
is to minimize this sum to ensure that running services on
selected fogs are as close as possible to users.

The objective of the fourth cost, c4, is to minimize the
number of fogs used for a placement. This helps minimize
the cluster complexity and the load on the orchestrator,
which is responsible of managing all services running and
the health of every fog. This objective leads to faster learning
of changing fog resources and optimal placement, therefore
improving the QoS experienced by the users. This cost is
calculated as follows:

c4 = λ4r(t)
ᵀ
1 (6)

In Equation 6, we sum the number of fogs that are used for
placement, by summing the 1’s in r(t).

Finally, the agent is allowed to make placement decisions
that are not feasible, however, it’s prompted to learn from
it’s mistakes through a punishment technique. For instance,
an action is deemed infeasible if the agent overloads a fog by
utilizing more than its available capacity. Thus, we calculate
the CPU punishment score for the agent using the below
equation:

p scorecpu =
m∑
i=1

max(
n∑
j=1

(Pjcpuk(t)ij)− Ficpu , 0) (7)

In Equation 7,
∑n
j=1 Pjcpuk(t)ij is equal to the total CPU

required by the containers and asked to be hosted on Fi.
Our p scorecpu calculates the excess of CPU utilization on
Fi to be added to the total cost. Similar equations apply
for calculating p scoremem and p scoredisk, which are the
punishment scores for memory and disk excess, by simply
replacing the index cpu by mem and disk respectively.
Therefore, the punishment score is the sum of the three
scores following Equation 8.

p score = p scorecpu + p scoremem + p scoredisk (8)

Following the calculation of the four sub-costs and the
punishment score, our cost function for evaluating the agent
action is expressed as follows:

C(s(t− 1, u−), a(t)|q(t)) =
4∑
l=1

cl + p score (9)

This cost is a combination of different measures that are
mainly used to evaluate the QoS level of the user in the fog

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on June 25,2021 at 07:18:36 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2021.3075988, IEEE
Transactions on Services Computing

8

environment. In our case, minimizing the function C implies
optimizing the QoS. Therefore, we use the cost function as
a measurement of the QoS level experienced by the users in
our experiments.

6 IFSP USING DEEP REINFORCEMENT LEARNING

The IFSP agent interacts with the environment for evaluat-
ing the placement action taken for each container. The agent
executes actions for every state encountered and builds a
strategy that adapts to the stochastic changing demands of
users requesting services. The end goal of the agent is to
learn the transition probability distribution from a state to
all next states and find the optimal policy π∗, which takes
as input a state and outputs the action that minimizes the
future cost. In other words, π∗ is a strategy or a set of actions
the agent takes to minimize the cost. The future costs are
discounted by γ, which controls the effect of future actions
on past and current states and helps achieve the agent’s
mathematical convergence. By letting C(s(t, u), π) be the
cost implied by choosing policy π from t that indicates the
following actions a(t

′
), such that t ≤ t′ ≤ T where T is the

final time-step of the episodes, the future discounted cost is
represented as:

C(s(t, u), π) =
T∑
t′=t

γt
′
−tC(s(t

′
, u

′
), a(t

′
)|q(t

′
)) (10)

where u
′

is updated to u+ at each t
′
. We denote by Q∗(s, a)

the optimal action value function which minimizes the
average expected cost for any selected strategy. It can be
expressed as:

Q∗(s, a) = min
π

E[C(s(t− 1, u−), π)|s(t− 1, u−) = s,

a(t) = a, π] (11)

The optimal Q-function selects the action of the next state
that minimizes the action value function following the be-
low equation:

Q∗(s, a) = Es′∼E [C + γmin
a′

Q(s
′
, a

′
)] (12)

where C is the immediate cost from Equation 9 and E is
the state at T . The basic form of RL is to find the optimal
action value function using iterative updates following the
Bellman equation. This update can be expressed as:

Q(s, a) := Q(s, a) + α[C + γmin
a′

Q(s
′
, a

′
)] (13)

where α is the learning rate. In Equation 13, the update of
the Q-function happens following the Q-learning algorithm
[36]. All Q-values are stored in a table structure containing
the list of states and actions. An exploration-exploitation
trade-off aids the agent into interacting with the environ-
ment by covering the maximum number of possibilities,
observing the cost signal, and updating the Q-values using
Equation 13.

However, the use of tabular RL is not practical in our
problem, where we have a large state space. The state-space
can grow with an increase in the number of containers and
hosts to place. Thus, handling the whole table in memory,
trying to cover all possible actions for every state, and

updating the Q-values for all of them is computationally
very expensive. Such an implementation is time consuming
and makes any tabular RL agent diverge [37]. As a solution,
learning the optimal Q-values can be retrieved from some
adjustable weights denoted as θ. These weights get updated
using gradient descent to update the weights downwards
towards the direction of the gradient for minimizing the
error of the calculated Q-values for every iteration. The
common form of approximation is the linear function ap-
proximation which generalizes the environment through its
weight, where the Q-function becomes close to the optimal
Q∗ having Q∗(s, a) ≈ Q(s, a, θ).

Given the advantages of a linear approximation to over-
come the tabular learning limitations, these models will
not be able to generalize well when the model complex-
ity and state spaces increase. Here comes the advantage
of using non-linear approximations such as Deep Neural
Network (DNN) to approximate the environment, giving
the agent the power of Deep Learning (DL) to update
its weights, where training can be customized [38]. The
Deep Q-Network (DQN) algorithm has the advantage of
merging the concepts of RL and DL [39]. Henceforth and
after experimenting with the different linear approximation
approaches for building our IFSP agent, including Tem-
poral Difference TD(0) and TD(λ) [40], DQN outperforms
the other approximation methods. Algorithm 1 provides a
pseudo-code of our IFSP learning algorithm, which benefits
from the advancement achieved in DQN.

DQN benefits from the DL power in the supervised
learning paradigm of machine learning. This is made pos-
sible by introducing a replay buffer that performs mini-
batch sampling and stores the weights in a target network.
In the sequel, we go over our implementation of the DQN
algorithm for building the IFSP agent.

As illustrated in Algorithm 1, we start by creating a
multi-layer perceptron for the source model used for calcu-
lating the state action-value function Q using its weights θ.
The input to the model is a transition sample, and the output
is a single neuron with linear activation. A target multi-layer
perceptron is created, which is a copy of the source model.
We denote by θ− the weights of the target model, which
are a copy of θ in the initialization phase (line 1). We then
initialize a replay buffer D of size G = 1000 which stores
the transition containing the current state, the action taken,
the cost retrieved, and the next state observed (line 2).

The learning starts by initializing a random state s(t)
at the beginning of every episode (line 5). X episodes are
played for learning. X varies depending on the input size
for the test case. Each episode is bounded by T learning
steps. Every step starts by deciding on the action taken for
the current state. We implement this decision by following
the ε-greedy policy, which is essential for achieving a trade-
off between exploration and exploitation. In ε-greedy, we
set ε to be a variable that decays over time. For instance,
ε = B1

B2+Numberofiteration decreases as the number of itera-
tion increases, where B1 and B2 are two constants such that
B1 < B2. We then generate a random value of w between
zero and one. If 1−ε > w, we select an action randomly from
the action space (lines 8-9). This is known as an exploration
iteration for the agent. Otherwise, the action having the
maximum Q-value in the source model is selected (lines 10-

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on June 25,2021 at 07:18:36 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2021.3075988, IEEE
Transactions on Services Computing

9

Algorithm 1: IFSP Algorithm Using DQN

1 Build a Multi-Layer Perceptron as source model to
calculate Q and randomly initialize its weights θ;

2 Build a target model for Q with weights θ− which
are a copy of θ;

3 Initialize replay buffer D to capacity G;
4 while episode X do
5 Initialize a random state s(t, u);
6 Reset t;
7 while t < T do

/* following ε-greedy policy */

8 if Random Selection then
9 select a(t+ 1) randomly from feasible

actions;
10 else
11 a(t+ 1) = maxaQ(s(t, u), a, θ);
12 end
13 Update k(t+ 1), observe q(t+ 1);
14 Calculate C(s(t, u), a(t+ 1)|q(t+ 1)) using

Equation 9;
15 Update u to u+;
16 Build s(t+ 1, u+);
17 Store [s(t, u), a(t+ 1), C(s(t, u), a(t+ 1)|q(t+

1)), s(t+ 1, u+)] in D;
18 Select random mini-batch transition

(si, ai, Ci, si+1)) of size Y from D;
19 for j in length(mini-batch) do
20 yi = Ci + γmina′ Q(si+1, a

′
, θ−);

21 end
22 Update θ using gradient descent towards

minimizing the loss: (yi −Q(si, ai, θ))
2 for

every transition;
23 if length(D) > G then
24 Pop out the oldest element in D;
25 end
26 Every Z steps, copy θ into θ−;
27 Update the current state to s(t+ 1, u+);
28 Increment t;
29 end
30 Increment Episode;
31 end

11). This is known as the exploitation iteration.
After taking the action, the agent observes the service de-

mands after the service placement is updated. This then al-
lows the agent to calculate the cost C(s(t, u), a(t+1)|q(t+1))
using Equation 9. After forming the next state s(t+1, u+), a
transition is stored in the replay buffer (lines 13-17). Because
updating the model online as data come causes instability,
data are stored in the replay buffer. Samples from these data,
of size Y = 50, are extracted randomly and uniformly to
form the mini-batch dataset for the model to train and break
the problem of correlation between sequences of actions
(line 18). As mentioned previously, the source weights are
stored in the target model. This is vital to improve the source
model learning stability. The source model adjusts θ of Q-
function by using the predictedQ-values of the target model
as labels (lines 19-21). This, in turn, builds a supervised
learning context with a fixed dataset and labels on which

to train. In our implementation of our IFSP-based DQN,
loss functions are inferred and calculated for every iteration
using the mean squared error loss (line 22). This loss is
back-propagated to the neurons using the gradient-descent
towards minimizing the loss to get a better estimate of Q
(line 22). To preserve the RL concept for allowing the model
to keep on improving the Q-function as new data come, the
replay buffer D keeps on updating slowly by removing the
oldest transitions at every iteration when the buffer is full
(lines 23-25). On the other hand, the weights for the target
model θ− keeps on updating after Z = 500 (line 26).

7 EXPERIMENTAL STUDY

In this section, we experiment with our proposed IFSP
solution based on DQN by studying the following:

• The convergence behavior of IFSP for small,
medium, and large scale clusters, where the objective
is to minimize our cost function.

• The ability of the IFSP agent to adapt to changes in
the environment, including unexpected changes in
the users’ demand patterns for requested services,
and for unexpected changes in the cost function
parameters.

• The ability of the IFSP bootstrapping technique on
the cloud to avoid the high rate of exploration errors,
make the learning faster, and scale for large inputs.

• The ability of IFSP to outperform existing heuristic-
based approaches in (1) quality of the decision and
(2) execution time to take the decision.

Our data utilized throughout the experiments are ex-
tracted from the Google Cluster Trace 2011-2 dataset (GCT)
[41] and Nasa Server Logs (NSL) [42]. GCT provides real-
life deployment scenarios of services on available servers.
Thus, it provides a set of hosts with available resources
and a set of services having resources requirements. In
order to measure changing demands of requested services
in real scenarios, we can utilize any logs present on any
server, which point to the source IP of the user, the service
requested, and the timestamp. These fields are enough for
our IFSP agent to conduct the bootstrapping on the cloud
and update itself when running on the orchestrator. In NSL,
we considered source IP having the same subnet mask as
a single geographical entity requesting services. Requesting
a specific endpoint on the NASA web server is considered
as calling a single service. Thus, for each service extracted
from GCT, we assign a list of changing demands aggregated
during a specified period of one hour.

Our simulation was performed on a Core i7-8700 (12
CPUs), 32GB RAM, and a Graphic card for GPU com-
putation of type NVIDIA Quadro P620. We implemented
Algorithm 1 using Python and the Tensorflow library. Using
Tensorflow, we built the source and target networks. Our
networks have four layers of neurons with 32, 16, 8, and 1
neurons respectively. The activation function used on each
layer is ReLU, except for the output layer, where linear
activation is used to predict the Q-Value. The input of the
source and target neural networks is a combination of the
state and action taken at that state. The first layer has an
input size of n + (m × n) + 2, where n is the number

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on June 25,2021 at 07:18:36 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2021.3075988, IEEE
Transactions on Services Computing

10

F Fcpu Fmem Fdisk Fd
F1 0.5 0.24 0.4 500
F2 0.25 0.4 0.4 50
F3 1.0 1.0 1.0 20

TABLE 2: Fogs Configurations for Scenario 1 (s1)

P Pcpu Pmem Pdisk Pk
P1 0.12 0.2 0.2 0
P2 0.24 0.23 0.1 1
P3 0.18 0.2 0.32 0
P4 0.25 0.42 0.2 1
P5 0.31 0.15 0.24 1
P6 0.375 0.175 0.08 0

TABLE 3: Containers Configurations for Scenario 1 (s1)

of services, and m is the number of hosts as specified in
Section . We also use the RMS optimizer with a learning rate
of 0.001. Furthermore, we compare our approach with two
heuristic-based solutions and a DRL service placement so-
lution. These solutions are implemented from scratch based
on the objectives specified by each paper. In some of our
experiments, we rely on evaluating the cost function which
is directly related to the QoS experienced by the users. Fur-
thermore, for each experiment, we run a different number
of iterations depending on the objectives. For instance, we
run 103 iterations to study the convergence and stability of
IFSP. Meanwhile, 30 iterations are enough to illustrate the
bootstrapper advantage.

7.1 IFSP Convergence and Scalability
In order to study the performance of IFSP following our
MDP design, we simulate two different sizes of clusters
with a different number of fogs and services having varying
demands. Similar sizes are expected to be used in real-life
settings. In Scenario 1 (s1), we use 3 fogs and 6 containers
which are shown in Tables I and II and extracted from the
GCT dataset. The purpose of Tables I and II is to show a
snapshot of the data we have. For Scenario 2 (s2), we also
use the GCT dataset to simulate a larger cluster composed
of 15 fogs and 40 containers for validating the scalability of
our MDP design. For both scenarios, demands are assigned
to each service randomly from the NSL dataset. To compare
our solution with the optimal decision, we utilize a greedy
search for small inputs and pass it the demands after their
occurrence. This greedy search generates all possible solu-
tions for a given input, and yields the best placement for it,
considering the same weights and cost function.

We define the weights for the current simulation in
both scenarios as λ1 = λ2 = λ3 = λ4 = 0.25. Fig.
4 illustrates the convergence results towards minimizing
the cost function while the number of iterations increases.
The experiment was executed for 103 iterations in order to
illustrate the convergence and stability of IFSP. The results
shown in this figure are an average of 50 iterations for every
observation. We can observe in (s1) that IFSP is capable
of converging to make optimal decisions by approaching
the optimal line. The optimal line is extracted using the

Fig. 4: Convergence Performance of IFSP for Small and Large
Clusters

Fig. 5: IFSP Performance Evaluation while Changing Demands

greedy search method applied at each iteration for every
encountered load. In (s2), the the IFSP agent also converges,
validating its ability to handle large inputs. Due to the large
input and high paste of changing demands, using greedy
search to obtain the optimal decision is impossible. There-
fore, we elaborate later in this section on the optimality of
the decisions taken by comparing with a heuristic approach.
We can also observe from the results that (s1) achieves faster
convergence than (s2) due to the larger input experienced by
the agent in (s2). Furthermore, it is important to mention
that because all objective costs are given equal weights,
the agent is expected to take longer because of a more
complicated policy required to learn. In case one or two
objectives are given a weight of zero, the convergence will
be faster due to less complex policies to learn, which we
demonstrate in the next subsection.

7.2 IFSP Adapting to Environment Changes

In order to elaborate further on the ability of IFSP to adapt to
changing demands, we simulate Scenario 3 (s3) containing
8 fogs and 20 containers. We aim to study the combined and
normalized demands of users that are not met after doing
the IFSP placement for all services. In (s3), we aim to change
the pattern of demands four times intentionally for each
container to simulate how IFSP reacts to such a situation.
The change in demands is provoked every 40 iterations,
leading to 160 iterations during the evaluation. The results
are shown in Fig. 5. As shown in the figure, IFSP is able
to always converge into learning a pattern for the new
incoming demands. We can see four jumps in the numerical
cost for the four changes done to the demands because
of the new states encountered. We are also able to notice
through this simulation that the convergence incurred after

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on June 25,2021 at 07:18:36 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2021.3075988, IEEE
Transactions on Services Computing

11

the second change in demands is slightly faster than the
starting stages of learning. This reduction in convergence
speed is due to the tuned model that we have from the
first cycle of demands. As a conclusion from (s3), whenever
the pattern of demands for a service changes over time,
IFSP adapts to this change by learning new patterns and
meeting new demands when possible. In some cases, the
change in demands makes placing services impractical, and
therefore IFSP refrains from placing it. This is illustrated
in the first and fourth cycles of learning where the error is
larger compared to the second and third cycles.
The non-served requests studied in this experiment are
served by the cloud. A decrease in this amount implies
that more requests are served by the fog, therefore the
user experiences a lower response time and a better QoS.
Therefore, we show through this experiment that IFSP is
able to improve the QoS experienced by the users even-
though new patterns of demand are encountered.

As mentioned in our cost function formulation, four
weights are assigned to each objective cost, which can be
adjusted based on the service provider’s assessment of the
environment’s needs. Such changes in the cost function in-
troduce changes to the cost calculated by the agent. In order
to verify the robustness of the agent in such a situation, we
simulate Scenario 4 (s4), which confirms the intelligence of
IFSP for adapting to the changes in the cost function. In
(s4), we copy the cluster configuration of (s3) and update
the weights after hitting a predefined number of iterations
by the agent. The strategy for updating the weights is
illustrated in Fig. 6a. In this figure, a signal equal to one
means that the weight is in use for the current cycle. If
more than one weight is used, the total weight is divided
equally among them. In Fig. 6b, we show the performance of
IFSP while considering four consecutive changes in weights.
Every 100 iterations in (s4) are averaged to obtain the results
shown in the figure. The IFSP performance is measured
using the normalized cost function. The cost function starts
converging at the beginning until a change to the weights
occurs. A change in the weights causes a peak in the cost, as
shown in the results. After every change in weights, IFSP is
able to converge again to optimal solutions.

7.3 Comparison with DRL and Heuristic Approaches

Following the large input in (s2), we study in this section
the performance of our IFSP agent compared to existing
heuristic-based solutions [14], [43]. Besides, we compare
with a DRL solution for service placement at the edge [18]
and show the importance of using the IFSP bootstrapper.
The large input caused scalability issues by overloading
the memory when generating the possible actions in [18],
which is not the case when using IFSP. We also present
the limitations of the existing heuristic solutions in terms of
execution time when the input to the problem grows, thus
requiring more iterations to try finding the near optimal
solution. This in turn results in increasing the execution time
to make the placement decision, henceforth delaying the
update of services or ignoring them completely as demands
can change more often. We are also able to highlight the
importance of proactive placement, which is not possible
when using a heuristic solution. In this context, we build

(a) Weights Variation

(b) Model Convergence

Fig. 6: IFSP Performance Evaluation while Changing Weights

Scenario 5 (s5), which is a copy of (s2) input. However,
in (s5), the IFSP model has passed the bootstrapping on
the cloud discussed in Section 4, hence the model is a
continuation of the learning that happened in (s2). Knowing
that heuristic approaches rely on randomness to generate
solutions, the range of possibilities is considerable when the
input size is large, making it hard for the algorithm to hit
the optimal solution. For instance, in (s5), and following our
MDP design, the agent has 825 possibilities of placement to
be taken for each observed demand, which is an acceptable
number for such a large input. If we consider the service
placement formulation in [14] or in [43] for cloud/fog
placement, the number of possibilities is the different binary
combinations of a matrix of size 15 × 40. The implemented
heuristic solution embeds a local search to minimize the
chances of halting in local optimal, and speeds reaching
a feasible solution. The same cost function formulated in
Equation 9 is implemented for fitness evaluation in MA. We
used 200 generations and 100 individuals per generation
that evolves to find a feasible solution. More details about
the implemented MA can be found in [14].

After completing the bootstrapping phase in (s5), we
utilize the ready model to make decisions, benefiting from

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on June 25,2021 at 07:18:36 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2021.3075988, IEEE
Transactions on Services Computing

12

Fig. 7: Our IFSP Agent Performance v.s. Heuristic-Based Ap-
proaches In Scenario 5 (s5)

the mature model. On the other hand, we run the DRL
agent of [18] without bootstrapping, causing the agent to
start learning from scratch on the current environment.
Afterward, a snapshot of the decisions made by IFSP and
the DRL agent of [18] is taken. The lists of fogs and services
are passed to the heuristic solution to make the placement
decisions. In the existing heuristic solutions [14] [43], the
change in demands for services is not studied. In order to
measure the heuristic decision’s performance, we pass the
input to MA 10 times and record the average cost of the
placement decisions. A snapshot of the decisions made by
IFSP compared to heuristic-based approaches following (s5)
is illustrated in Fig. 7. The evaluation is performed for 30
iterations, which are enough to show the importance of us-
ing a bootstrapper compared to a traditional DRL solution.
Besides, each environment state is passed to heuristic for
evaluation, which is time-consuming. This also explains the
choice of 30 iterations for evaluation.

Following the performance of IFSP compared to DRL
and heuristic-based decisions, we can observe that the
normalized costs produced by IFSP are always less than
or equal to those produced by both solutions. The IFSP
and heuristic-based results are not only for the snapshot
of the sample, but also always valid after IFSP converges.
From Fig. 7, we can observe the large difference in the cost
results for all decisions made. In the case of DRL [18], the
agent starts at the beginning by exploring the environment
and taking random actions, which causes a high cost (i.e.
low QoS) at the first stages of learning compared. In con-
trast, the IFSP solution has a pretrained model using the
bootstrapper. This comparison highlights the importance of
using a bootstrapper to overcome existing DRL limitations.
Due to the limited capabilities of the heuristic solutions,
proactive placement of services is not possible. Because
we are executing the heuristic algorithm periodically, the
placement of the current timestamp is outdated because it
does not meet the actual demand. Moreover, due to the large
input size, the execution time of the heuristic solution in-
creases exponentially as illustrated in the next experiments.
In this context, initializing the environment and migrating
the containers consume more time, rendering the heuristic
algorithms infeasible in time-sensitive applications. Noting
that the results of Fig. 7 do not consider the time to setup
the environment based on the new placement decision. On
the other hand, IFSP is capable of taking decisions on the fly

Fig. 8: Execution Time While Changing The Number of Gener-
ations and Individuals In Scenario 5 (s5)

(a) Execution Time With 900 Gen-
erations and 300 Individuals

(b) Execution Time With 1000 Gen-
erations and 500 Individuals

Fig. 9: The execution time of heuristic-based approaches [14],
[43] using generations/individuals of 900/300 v.s. 1000/500
and changing the demands every 5 minutes for each iteration
in scenario (s5)

with a negligible processing time.
In heuristic-based algorithms, the processing time in-

creases due to the increase in the input size. Every Pareto
set, or list of best solutions is generated every time in
heuristic by looping for specific number of generations and
manipulating a set of individuals. The higher the num-
bers of generations and individuals are, the more likely
the heuristic algorithm will generate better solutions. In
(s5), because the input is large, we varied the numbers
of generations/individuals and studied the run time for
making the placement decision. The results of this exper-
iment are revealed in Fig. 8. The execution time of the
heuristic solution increases exponentially as the numbers of
Generation/Individual increase. Because our IFSP solution
is based on DRL, the execution time to get the placement
decision is negligible because the agent takes a forward pass
on the deep network for each action to select the best.

In order to elaborate further on the execution time draw-
back of using the heursitic solutions to solve our problem,
we consider applying the heuristics to our placement envi-
ronment by feeding it the changing demands in (s5). The
time between one iteration and another when the demands
change is 5 minutes. The purpose of the experiment is
to show the time needed for heuristic-based solutions to
update services in the environment. We also varied the num-
bers of generations/individuals for each trial. The results are
shown in Fig. 9a for 900/300 and in Fig. 9b for 1000/500.

As shown in Fig. 9a, the heuristic solution takes around

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on June 25,2021 at 07:18:36 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2021.3075988, IEEE
Transactions on Services Computing

13

1.5 minutes to generate every solution. This is shown in
every peak in execution time at the beginning of the iter-
ation. These peaks are the time taken to update services,
whereas our IFSP agent updates the services proactively
before demands occur. Increasing the number of genera-
tions/individuals to 1000/500, we observe in Fig. 9b that the
execution time of the heuristic solution is not terminating at
every iteration (never updating the services), because the
time it takes to produce the solution is more than 5 minutes
(the duration of observing new demands).

Therefore, heuristic-based solutions are not suitable for
time-sensitive placement problems and can be replaced by
our solution. IFSP is capable of producing more efficient
results in minimal execution time. We also benefit from
the IFSP Bootsrapper running on the cloud to prepare the
orchestrator. Furthermore, because IFSP is (1) scalable, (2)
capable of adapting to changes in the environment, and (3)
making proactive decisions before demands occur, it can
completely replace the state-of-the-art heuristic solutions.

8 CONCLUSION AND FUTURE WORK

Fog and service placement is a challenging problem in
demands-driven context entailing the need for effective
decisions while adequately adapting to environmental
changes. The use of heuristic solutions to perform the place-
ment is not feasible due to the changing demands and the
possibility of heuristics to diverge from optimal solutions.
Empowered by the breakthroughs in the AI field, we exploit
in the paper the use of DRL as an intelligent solution for
fog selection and container placement. Despite the errors
made by the agent at the exploration stage and the long
time required to learn, we are able to build an IFSP agent
based on DQN capable of making efficient decisions in no
time. This is possible by incorporating an intelligent IFSS
scheduler and a bootstrapper for preparing the IFSP model
before being used. We then formulated an MDP design used
for developing the IFSP agent based on the DQN algorithm.
Our MDP formulation allows the agent to take proactive
decisions, to study the change in user demands, and to
consider fulfilling multiple objectives for serving the fog
computing context. Through experimental studies, we used
real-life datasets and demonstrated our IFSP agent’s ability
to generate efficient solutions for small and large cluster
sizes. We were also able to validate the ability of IFSP to
adapt to changes in the environment, including demand
changes and preferences adjustments for calculating the cost
function. In addition to these advancements, we were able to
exhibit the power of our intelligent solution for generating
better solutions compared to the state of the art heuristic
solutions in large scale clusters.

As future work, we are working on advancing the scala-
bility of the bootstrapping running on the cloud. Because the
cloud has to orchestrate a large number of on-demand fog
clusters, efficient federated learning is promising for achiev-
ing faster learning and responsiveness to changes in the fog
clusters. Furthermore, caching the bootstrapped models is
useful for efficient management of computing resources on
the cloud. Thus, the development of an intelligent caching
mechanism based on studying the frequency of demanding
some IFSP model is another research direction.

REFERENCES

[1] M. R. Palattella, M. Dohler, A. Grieco, G. Rizzo, J. Torsner, T. Engel,
and L. Ladid, “Internet of things in the 5g era: Enablers, archi-
tecture, and business models,” IEEE Journal on Selected Areas in
Communications, vol. 34, no. 3, pp. 510–527, 2016.

[2] R. Mahmud, R. Kotagiri, and R. Buyya, “Fog computing: A
taxonomy, survey and future directions,” in Internet of everything.
Springer, 2018, pp. 103–130.

[3] A. V. Dastjerdi and R. Buyya, “Fog computing: Helping the
internet of things realize its potential,” Computer, vol. 49, no. 8,
pp. 112–116, 2016.

[4] H. A. Alameddine, S. Sharafeddine, S. Sebbah, S. Ayoubi, and
C. Assi, “Dynamic task offloading and scheduling for low-latency
iot services in multi-access edge computing,” IEEE Journal on
Selected Areas in Communications, vol. 37, no. 3, pp. 668–682, 2019.

[5] R. K. Naha, S. Garg, D. Georgakopoulos, P. P. Jayaraman, L. Gao,
Y. Xiang, and R. Ranjan, “Fog computing: Survey of trends,
architectures, requirements, and research directions,” IEEE access,
vol. 6, pp. 47 980–48 009, 2018.

[6] H. Sami and A. Mourad, “Towards dynamic on-demand fog com-
puting formation based on containerization technology,” in 2018
International Conference on Computational Science and Computational
Intelligence (CSCI). IEEE, 2018, pp. 960–965.

[7] D. Merkel, “Docker: lightweight linux containers for consistent
development and deployment,” Linux journal, vol. 2014, no. 239,
p. 2, 2014.

[8] D. Vohra, Kubernetes microservices with Docker. Apress, 2016.
[9] N. Moati, H. Otrok, A. Mourad, and J.-M. Robert, “Reputation-

based cooperative detection model of selfish nodes in cluster-
based qos-olsr protocol,” Wireless personal communications, vol. 75,
no. 3, pp. 1747–1768, 2014.

[10] S. A. Rahman, A. Mourad, M. El Barachi, and W. Al Orabi, “A
novel on-demand vehicular sensing framework for traffic condi-
tion monitoring,” Vehicular Communications, vol. 12, pp. 165–178,
2018.

[11] A. A. Abdallah, S. S. Saab, and Z. M. Kassas, “A machine learn-
ing approach for localization in cellular environments,” in 2018
IEEE/ION Position, Location and Navigation Symposium (PLANS),
2018, pp. 1223–1227.

[12] W. Fawaz, R. Atallah, C. Assi, and M. Khabbaz, “Unmanned aerial
vehicles as store-carry-forward nodes for vehicular networks,”
IEEE Access, vol. 5, pp. 23 710–23 718, 2017.

[13] W. Fawaz, “Effect of non-cooperative vehicles on path connectiv-
ity in vehicular networks: A theoretical analysis and uav-based
remedy,” Vehicular Communications, vol. 11, pp. 12–19, 2018.

[14] H. Sami and A. Mourad, “Dynamic on-demand fog formation
offering on-the-fly iot service deployment,” IEEE Transactions on
Network and Service Management, 2020.

[15] H. Sami, A. Mourad, and W. El-Hajj, “Vehicular-obus-as-on-
demand-fogs: Resource and context aware deployment of con-
tainerized micro-services,” IEEE/ACM Transactions on Networking,
vol. 28, no. 2, pp. 778–790, 2020.

[16] P. Farhat, H. Sami, and A. Mourad, “Reinforcement r-learning
model for time scheduling of on-demand fog placement,” The
Journal of Supercomputing, vol. 76, no. 1, pp. 388–410, 2020.

[17] M. Chen, W. Li, G. Fortino, Y. Hao, L. Hu, and I. Humar, “A
dynamic service migration mechanism in edge cognitive comput-
ing,” ACM Transactions on Internet Technology (TOIT), vol. 19, no. 2,
pp. 1–15, 2019.

[18] Z. Tang, X. Zhou, F. Zhang, W. Jia, and W. Zhao, “Migration mod-
eling and learning algorithms for containers in fog computing,”
IEEE Transactions on Services Computing, vol. 12, no. 5, pp. 712–725,
2018.

[19] F. Rossi, V. Cardellini, and F. L. Presti, “Elastic deployment of
software containers in geo-distributed computing environments,”
in Proc. of IEEE ISCC’19, 2019.

[20] O. Skarlat, M. Nardelli, S. Schulte, and S. Dustdar, “Towards
qos-aware fog service placement,” in 2017 IEEE 1st international
conference on Fog and Edge Computing (ICFEC). IEEE, 2017, pp.
89–96.

[21] H. Goudarzi and M. Pedram, “Energy-efficient virtual machine
replication and placement in a cloud computing system,” in 2012
IEEE Fifth International Conference on Cloud Computing. IEEE, 2012,
pp. 750–757.

[22] N. M. Calcavecchia, O. Biran, E. Hadad, and Y. Moatti, “Vm
placement strategies for cloud scenarios,” in 2012 IEEE Fifth Inter-
national Conference on Cloud Computing. IEEE, 2012, pp. 852–859.

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on June 25,2021 at 07:18:36 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2021.3075988, IEEE
Transactions on Services Computing

14

[23] L. Zhao and J. Liu, “Optimal placement of virtual machines for
supporting multiple applications in mobile edge networks,” IEEE
Transactions on Vehicular Technology, vol. 67, no. 7, pp. 6533–6545,
2018.

[24] A. Ceselli, M. Premoli, and S. Secci, “Mobile edge cloud net-
work design optimization,” IEEE/ACM Transactions on Networking,
vol. 25, no. 3, pp. 1818–1831, 2017.

[25] A. Sadeghi, F. Sheikholeslami, and G. B. Giannakis, “Optimal and
scalable caching for 5g using reinforcement learning of space-time
popularities,” IEEE Journal of Selected Topics in Signal Processing,
vol. 12, no. 1, pp. 180–190, 2017.

[26] X. Lin, Y. Tang, X. Lei, J. Xia, Q. Zhou, H. Wu, and L. Fan, “Marl-
based distributed cache placement for wireless networks,” IEEE
Access, vol. 7, pp. 62 606–62 615, 2019.

[27] Y. Wei, F. R. Yu, M. Song, and Z. Han, “Joint optimization of
caching, computing, and radio resources for fog-enabled iot using
natural actor–critic deep reinforcement learning,” IEEE Internet of
Things Journal, vol. 6, no. 2, pp. 2061–2073, 2018.

[28] Y. Sun, M. Peng, and S. Mao, “Deep reinforcement learning-based
mode selection and resource management for green fog radio
access networks,” IEEE Internet of Things Journal, vol. 6, no. 2, pp.
1960–1971, 2018.

[29] N. Kherraf, H. A. Alameddine, S. Sharafeddine, C. M. Assi,
and A. Ghrayeb, “Optimized provisioning of edge computing
resources with heterogeneous workload in iot networks,” IEEE
Transactions on Network and Service Management, vol. 16, no. 2, pp.
459–474, 2019.

[30] T. Baker, B. Aldawsari, M. Asim, H. Tawfik, Z. Maamar, and
R. Buyya, “Cloud-senergy: A bin-packing based multi-cloud ser-
vice broker for energy efficient composition and execution of
data-intensive applications,” Sustainable Computing: informatics and
systems, vol. 19, pp. 242–252, 2018.

[31] P. Kendrick, T. Baker, Z. Maamar, A. Hussain, R. Buyya, and
D. Al-Jumeily, “An efficient multi-cloud service composition using
a distributed multiagent-based, memory-driven approach,” IEEE
Transactions on Sustainable Computing, 2018.

[32] N. C. Luong, D. T. Hoang, S. Gong, D. Niyato, P. Wang, Y.-C. Liang,
and D. I. Kim, “Applications of deep reinforcement learning in
communications and networking: A survey,” IEEE Communications
Surveys & Tutorials, vol. 21, no. 4, pp. 3133–3174, 2019.

[33] H. Sami, A. Mourad, H. Otrok, and J. Bentahar, “Fscaler: Auto-
matic resource scaling of containers in fog clusters using reinforce-
ment learning,” in 2020 International Wireless Communications and
Mobile Computing (IWCMC). IEEE, 2020, pp. 1824–1829.

[34] J.-y. Baek, G. Kaddoum, S. Garg, K. Kaur, and V. Gravel, “Man-
aging fog networks using reinforcement learning based load
balancing algorithm,” in 2019 IEEE Wireless Communications and
Networking Conference (WCNC). IEEE, 2019, pp. 1–7.

[35] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,
D. Wierstra, and M. Riedmiller, “Playing atari with deep reinforce-
ment learning,” arXiv preprint arXiv:1312.5602, 2013.

[36] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement
learning: A survey,” Journal of artificial intelligence research, vol. 4,
pp. 237–285, 1996.

[37] X. Xu, L. Zuo, and Z. Huang, “Reinforcement learning algorithms
with function approximation: Recent advances and applications,”
Information Sciences, vol. 261, pp. 1–31, 2014.

[38] S. S. Saab and D. Shen, “Multidimensional gains for stochastic
approximation,” IEEE transactions on neural networks and learning
systems, vol. 31, no. 5, pp. 1602–1615, 2019.

[39] Y. Li, “Deep reinforcement learning: An overview,” arXiv preprint
arXiv:1701.07274, 2017.

[40] G. Tesauro, “Temporal difference learning and td-gammon,” Com-
munications of the ACM, vol. 38, no. 3, pp. 58–68, 1995.

[41] C. Reiss, J. Wilkes, and J. L. Hellerstein, “Google cluster-usage
traces: format+ schema,” Google Inc., White Paper, pp. 1–14, 2011.

[42] Nasa dataset - two months of http logs from a busy www server.
[Online]. Available: https://ita.ee.lbl.gov/html/contrib/NASA-
HTTP

[43] F. López-Pires and B. Barán, “Many-objective virtual machine
placement,” Journal of Grid Computing, vol. 15, no. 2, pp. 161–176,
2017.

Hani Sami is currently pursuing his Ph.D. at
Concordia University, Institute for information
Systems Engineering (CIISE). He received his
M.Sc. degree in Computer Science from the
American University of Beirut and completed
his B.S. and worked as Research Assistant at
the Lebanese American University. The topics of
his research are Fog Computing, Vehicular Fog
Computing, and Reinforcement Learning. He is
a reviewer of several prestigious conferences
and journals.

Azzam Mourad received his M.Sc. in CS from
Laval University, Canada (2003) and Ph.D. in
ECE from Concordia University, Canada (2008).
He is currently an associate professor of com-
puter science with the Lebanese American Uni-
versity and an affiliate associate professor with
the Software Engineering and IT Department,
Ecole de Technologie Superieure (ETS), Mon-
treal, Canada. He published more than 100 pa-
pers in international journal and conferences on
Security, Network and Service Optimization and

Management targeting IoT, Cloud/Fog/Edge Computing, Vehicular and
Mobile Networks, and Federated Learning. He has served/serves as an
associate editor for IEEE Transaction on Network and Service Manage-
ment, IEEE Network, IEEE Open Journal of the Communications Soci-
ety, IET Quantum Communication, and IEEE Communications Letters,
the General Chair of IWCMC2020, the General Co-Chair of WiMob2016,
and the Track Chair, a TPC member, and a reviewer for several presti-
gious journals and conferences. He is an IEEE senior member.

Hadi Otrok holds an associate professor posi-
tion in the department of ECE at Khalifa Uni-
versity of Science and Technology, an affiliate
associate professor in the Concordia Institute for
Information Systems Engineering at Concordia
University, Montreal, Canada, and an affiliate
associate professor in the electrical department
at Ecole de Technologie Superieure (ETS), Mon-
treal, Canada. He received his Ph.D. in ECE
from Concordia University. He is a senior mem-
ber at IEEE, and associate editor at: Ad-hoc

networks (Elsevier) and IEEE Networks. He served in the editorial board
of IEEE communication letters. He co-chaired several committees at
various IEEE conferences. His research interests include the domain
of computer and network security, crowd sensing and sourcing, ad hoc
networks, Reinforcement Learning, and Blockchain.

Jamal Bentahar received the Ph.D. degree
in computer science and software engineering
from Laval University, Canada, in 2005. He is
a Professor with Concordia Institute for Infor-
mation Systems Engineering, Concordia Uni-
versity, Canada. From 2005 to 2006, he was
a Postdoctoral Fellow with Laval University,
and then NSERC Postdoctoral Fellow at Simon
Fraser University, Canada. He is an NSERC Co-
Chair for Discovery Grant for Computer Science
(2016-2018). His research interests include the

areas of computational logics, model checking, multi-agent systems,
service computing, game theory, and software engineering.

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on June 25,2021 at 07:18:36 UTC from IEEE Xplore. Restrictions apply.

