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Abstract
On the fly deployment of fog nodes near users provides the flexibility of pushing 
services anywhere and whenever needed. Nevertheless, taking a real-life scenario, 
the cloud might limit the number of fogs to place for minimizing the complexity 
of monitoring a large number of fogs and cost for volunteers that do not offer their 
resources for free. This implies choosing the right time and best volunteer to create 
a fog which the cloud can benefit from is essential. This choice is subject to study 
the demand of a particular location for services in order to maximize the resources 
utilization of these fogs. A simple algorithm will not be able to explore randomly 
changing users’ demands. Therefore, there is a need for an intelligent model capable 
of scheduling fog placement based on the user’s requests. In this paper, we propose 
a Fog Scheduling Decision model based on reinforcement R-learning, which focuses 
on studying the behavior of service requesters and produces a suitable fog placement 
schedule based on the concept of average reward. Our model aims to decrease the 
cloud’s load by utilizing the maximum available fogs resources over different loca-
tions. An implementation of our proposed R-learning model is provided in the paper, 
followed by a series of experiments on a real dataset to prove its efficiency in utiliz-
ing fog resources and minimizing the cloud’s load. We also demonstrate the ability 
of our model to improve over time by adapting the new demand of users. Experi-
ments comparing the decisions of our model with two other potential fog placement 
approaches used for task/service scheduling (threshold based and random based) 
show that the number of processed requests performed by the cloud decreases from 
100 to 30% with a limited number of fogs to push. These results demonstrate that 
our proposed Fog Scheduling Decision model plays a crucial role in the placement 
of the on-demand fog to the right location at the right time while taking into account 
the user’s needs.
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1 Introduction

The increasing number of IoT (Internet of Things) devices [1] having limited 
resources led to the presence of fogs that are deployed at the edge of the network 
by extending the cloud solutions [2, 3]. Fog nodes [4] tend to assist such con-
straint devices that require fast processing and low networking delays to maintain 
an acceptable level of quality of service (QoS) for the cloud applications [5]. The 
concept of fog computing can be illustrated as a software running on a device that 
collects, processes, and sends data on behalf of the IoT devices to the cloud. The 
main advantage of deploying fog nodes is performing some processing on behalf 
of the cloud to minimize the resources load on it and achieve a lower response 
time while avoiding the propagation delays to/from the user. This strategy helps 
to avoid network congestion and save energy on the requesting devices. In our 
previous work [6], we utilized the volunteering resources present everywhere to 
become fog devices and enhance the fog availability. The flexibility of initializing 
any type of device as fogs was made possible through our on-demand fog for-
mation framework. Lightweight services are pushed as containerized micro-ser-
vices and monitored using the Kubeadm orchestration tool that divides volunteers 
into clusters [7, 8]. In our framework, we let the cloud take the time scheduling 
decision and assumed that optimal decision was always taken by default. To the 
best of our knowledge, none of the related literature has implemented a decision 
model that considers user’s historical behavior of requesting a service to decide 
on the proper time an location to place that service on fog devices.

Pushing on-demand fogs to volunteering devices everywhere has its disadvan-
tages also. Here we mention the potential high complexity of monitoring all fog 
placements [9], which the cloud is responsible for. Moreover, having to push ser-
vices everywhere can be considered as a security threat for the service provider, 
especially when services get controlled by volunteers [10]. In addition, volun-
teers will, at some point, ask for a reward for their offered services, which the 
cloud should pay [11]. All of these factors lead to the need for minimizing the 
number of fog placement. Therefore, these are considered as the main motiva-
tions behind limiting the number of fog placement by the cloud. This now raises 
another challenge on the cloud, which is making fog placement decisions at the 
time and place that best maximizes its profit by maximizing the utilization of fog 
resources. Simple approaches are not enough for the cloud to make good schedul-
ing decisions for cloud placement. However, there should be a model that studies 
users’ demands to decide on the best time and place to schedule the fog. Push-
ing fogs to places having high demands of services can significantly improve 
the decision efficiency by maximizing the fog resources utilization and therefore 
minimizing the load on the cloud by having to deal with fewer requests. An exam-
ple of possible approaches for fog scheduling is the threshold-based and random-
based approaches which we prove in the paper that they are not applicable in real 
life.

In this paper, we address the aforementioned problem by proposing a Fog 
Scheduling Decision model based on a reinforcement learning technique called 
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R-learning. R-learning has a similar concept to the Q-learning technique. They 
both use Q-tables, states, actions, reward, and loss. However, the main differ-
ence is that R-learning uses the concept of average reward and not the discounted 
reward [12]. In other words, our problem does not converge to a static end goal, 
but rather a general goal of minimizing the cloud load. This is done by maximiz-
ing the total average reward of transitioning between all states and taking actions. 
R-learning is an area of reinforcement learning that aims to maximize the total 
reward by taking a certain action on a given state and performing punishment 
whenever the model fails to meet the expectation [12, 13]. In this context, our 
proposed approach predicts the time and location of the needed fogs that mostly 
minimize the number of requests processed by the cloud while serving the big-
gest number of requests generated by users or IoT devices and therefore maximize 
the usage of volunteering resources. The predictions of this algorithm help in 
increasing the QoS as well as maintaining a low pressure on the cloud resources. 
This is done through studying user’s behavior of making requests to services 
hosted on the cloud. Users’ requests can be tracked using the server’s logs. A real 
dataset is used from the logs of the NASA server [14], and experiments are con-
ducted on the implemented scheduling model to prove its efficiency and enhance-
ments achieved over time by taking near-optimal service scheduling decisions. 
We also compare our proposed model to the decisions taken by the threshold- and 
random-based approaches to show the achieved improvement.

The rest of this paper is organized as follows: In Sect.  2, we present some 
background information and study the current work surrounding the use of the 
time scheduling model and the effect of its absence. In Sect. 3, we introduce an 
overview of the architecture and methodology used where our proposed model 
plays the main role. In Sect. 4, we propose the Fog Scheduling Decision model 
and explain the mathematical formulas and R-learning algorithm behind it. Sec-
tion 5 is dedicated to analyzing the results generated by our experiments. Finally, 
we conclude the paper and present future directions in Sect. 6.

2  Related work

Trying to schedule task placement on the spot when the user requests to have one 
nearby or based on standard criteria such as threshold and ad hoc decision-making is 
not relevant when a lot of services need to be pushed on a specific number of volun-
teers. To the best of our knowledge, we are the first to tackle the problem of deciding 
on the proper time and place to schedule a task or a service placement in the form 
of containers on a defined number of available fogs. Therefore, in this section, we 
discuss the different work in the literature that misses tackling this decision model.

We first go over some of the surveys discussing current fog’s open problems 
and challenges. We then summarize existing work that considers tasks or services 
scheduling on available resources, and others that use containers to push services 
on the fly.
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2.1  Fog computing existing challenges

In recent surveys [11, 15, 16], authors have highlighted the need for a proper 
model that schedules tasks and services in the form of containers on available fogs’ 
resources, while emphasizing on its crucial effect on any further studies in this area. 
This scheduling is divided into two parts: The first is the proper decision on the time 
and place where the service should be pushed, which is our main area of interest in 
this paper. Second is the way of distributing the services on different heterogeneous 
available resources, which is mapped to the container placement problem in our pre-
vious work [6]. Various approaches in the literature have also considered solving the 
problem of placing tasks on resources [17–19], where heuristics was proved to take 
an accurate selection and placement decisions. However, predicting the right time 
and best place to assign the service to remains an open problem because of the non-
deterministic user behavior and random requests of service assignments.

2.2  Task scheduling on available fog resources

Several approaches are meant to schedule task offloading on fog devices in two 
ways. From user to fog, so the user makes the offloading decision [20, 21], and from 
fog to cloud in case heavy task cannot be processed by fogs [22, 23]. However, none 
of them considered scheduling services from cloud to fogs based on user’s demands 
in an automated way. The work in  Zeng et al. [24] considers the scheduling problem 
of tasks on available fogs. Task processing can be done on two fog layers, either on 
an embedded device with limited resources near the client or on a server with high 
computation power. A fog server is capable of handling multiple tasks at the same 
time in contrast to the embedded devices. Besides, reaching the server to execute 
required assignments by the embedded devices can be subjected to network latency. 
Therefore, balancing the load on these fogs and scheduling the tasks on the proper 
device are highly relevant. To solve such a scheduling issue, they proposed a heuris-
tics solution that aims to minimize the execution time of jobs on available resources. 
Results are promising in terms of reducing such time. On the other hand, this work 
did not study the behavior of users requesting the task concerning time and resources 
usage of the embedded device or server. This is important because a particular task 
scheduled on a server at time t = 1s can better utilize these resources for a small task 
scheduled at t = 0s. In Pham and Huh [23], users’ requests are always received by a 
broker that manages available resources on the cloud and fogs, monitors the commu-
nication costs between them, and decides on the optimal task scheduling. Heuristics 
solution is proposed to schedule tasks between fogs and available cloud resources 
based on the task priority and resources available on fog nodes. Two major limi-
tations of [24] and [23] are discussed as follows: First, both the above-mentioned 
studies miss considering the main factor of scheduling tasks depending on users’ 
behavior of a particular location to be able to predict the fogs load. Second, they 
use heuristics to solve the scheduling problem while looking only at the current 
state in terms of resources requirements. Therefore, their solutions are not able to 
improve over time. These factors are considered the main motivation behind our 
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work in this paper. A learning model that is taught by experience from a changing 
dataset is capable of scheduling adequate time and place for task offloading or fog 
placement as illustrated later in our experiments. Kherraf et  al. [25] and Alamed-
dine et al. [26] are trying to solve the similar problem of resource provisioning on 
edge/fog devices by dividing it into three subproblems: (1) Properly distribute the 
workload on the edge server, (2) decide on the proper placement of applications that 
needs to be pushed to process IoT generated, and (3) decide on the proper number of 
instances and locations to place these edge servers on. The authors formulated these 
problems mathematically using a mixed integer program and proposed a decomposi-
tion approach to solve them. On the other hand, we also point on the limitation of 
deciding on the proper time to schedule such placement, service deployment, and 
resource balancing decisions, which this work did not address. Authors in [27] try to 
minimize the time delay experienced by IoT devices whenever a fog is overloaded. 
Once an IoT device requests a service, the receiving fog estimates the waiting time 
for the task to be processed, which depends on the fog load. After setting a delay 
threshold, the fog decides whether to offload the task to a neighboring fog with less 
load to perform the processing. Setting a delay threshold is similar to placing a limit 
on the number of requests received, which can lead to offload the task or push ser-
vice. Using a threshold is not optimal because the behavior of the requests is subject 
to change over time. In our experiments, we refer to this strategy as threshold based. 
We implement the threshold strategy described in Sect.  4.1 and prove, by experi-
mentation, the advantage of R-learning model compared to it.

In [28], the cloud waits for the user to request a service placement. Because user 
behavior is random and capable of sending a placement request anytime, we refer 
to this strategy as random scheduling. We implement randomness described in 
Sect. 4.2 and prove through experiments how our approach outperforms the ad hoc/
random strategy of pushing services.

2.3  Fog computing solutions using containers

Different procedures use containerization technology to enable on-demand fog 
placement. Therefore, it is worth mentioning the main work that considered the use 
of containerization technology in the fog computing context and the effect of not 
adapting a solution for proper fog scheduling. Authors in [29] were able to prove the 
ability to push services on preselected fogs using containerization technology. An 
orchestration layer is used to manage the running services. This work contribution 
was limited to proposing a solution to place services on fogs, without considering 
the possibility that the number of services or tasks that should be executed might 
require more resources, and not all of them can be scheduled for placement. Simi-
larly, a model was proposed by the authors in [30], where the dynamic deployment 
of services on helper nodes(fogs) of the main server using Docker is possible. So it 
is feasible to remove, add, stop, and run any service on a physically known fog any-
time. The Kubernetes orchestrator was running on a server. Their approach was first 
to gather users’ requests on that server. Second, although fogs are not near users, the 
proposed model distributes requests on fogs after pushing the needed services. This 
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means that fogs are only doing some processing instead of the server. Furthermore, 
networking delays are not avoided. However, they are getting faster processing time 
because of distributing the tasks from one server to many nodes. The main limita-
tion of these two approaches is the missing factor of studying the proper assignment 
of tasks or services to available fogs. In case only a limited number of volunteering 
can be used, prioritizing services for scheduling can affect the framework efficiency. 
Therefore, the proper historical and behavioral study of users’ services requests, 
resources availability to use, and adequate time and place to assign the service are 
necessary for any approach serving placement of services on the fly.

3  Architecture and methodology

In our previous work [6], we were able to propose an on-demand framework capa-
ble of creating fog nodes on volunteering devices anywhere and anytime. Although 
resource availability is not enough for building fog devices, services shall be 
migrated in lightweight fashion with the least costs. Therefore, we used the contain-
erization technology to migrate small-sized micro-services and be adapted to run on 
any base operating system, i.e., any volunteering devices. Even though volunteer-
ing resources have limited resources capacity to host services, we suggested build-
ing Kubeadm clusters of available volunteers to augment computation power and 
enhance the distribution of micro-services. This being said, our framework is still 
missing a realistic fog scheduling model to be fully autonomous. Thereafter, this 
section is dedicated to describing the building blocks and functionalities of our fog 
scheduling model, preceded by a description of our on-demand fog formation frame-
work that led us to the importance of building it. Studying user’s behavior while 
requesting services is hard to do with a simple machine learning model. Therefore, 
we used reinforcement learning to learn user behavior by experience and adapt as 
services requirements per location change. In this section, we discuss the overall 
architecture combined with our learning decision model shown in Fig. 1 by dividing 
it into three main layers as follows: cloud, Kubeadm fog clusters, and users.

• The first and highest level contains the cloud. It holds three main components, 
which are the Services, the Requests Storage, and the Decision ML Model, 
which is an intelligent agent responsible for making decisions concerning 
fog scheduling and localization. The agent is based on an R-learning model 
detailed in the next section. The primary role of this agent is to study, using 
the information fed by the cloud to a database (Requests Storage), the behav-
ior of users of different locations. What is meant by “fed by the cloud” is that 
when a request is sent from any of the areas directly to the servers present 
on the cloud, those servers will take note of such an action by storing the 
information of the request in the Requests Storage database. By doing so, and 
by using techniques derived from R-learning methodologies, the agent will be 
able with time to make reasonable decisions of predicting when and where a 
fog shall be created. An example of the requests that are saved in the storage 
is shown in Fig. 2. These requests are made up of an IP address (which is used 
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to determine the location of the user), date and time, and requested service. 
We will elaborate more on the request’s format and usage later in this paper. 
To provide the reader with the general idea of how things work, a brief exam-
ple of the overall process is presented next. Suppose the agent learns with 
the time that a group of users at location L are going to be requesting a lot of 
services at 4:00 p.m., the agent alerts the clouds beforehand that a fog must 

Fig. 1  Overall model architecture

Fig. 2  A sample of the requests captured by the NASA server [14]
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be created at that location. This will cause the cloud to initiate a fog creation 
decision at location L.

• Level two of Fig. 1 constitutes the Kubeadm fog clusters. In our previous work 
[6], we have suggested a new concept of creating on-demand Kubeadm clusters, 
which aims to serve users. For a number of reasons, an architecture that com-
bines both containerization and micro-service technologies was used. Having 
this said, our cluster architecture was constituted of a master node representing 
an orchestrator and a worker node. The master is responsible for creating the 
cluster, adding and removing fog nodes, and monitoring the status and services 
running on the different volunteering worker nodes. On the other hand, worker 
nodes (fogs), which are chosen by the master node, are responsible for hosting 
the services and serving users. In this approach, the Kubeadm cluster is created 
whenever a group of volunteers can collaboratively form the cluster. As a relation 
to what we have mentioned above, the orchestrator pushes the demanded ser-
vices to targeted Kubeadm cluster in a specific location once the cloud decides to 
push a fog there. In our previous work, we assumed that the cloud always takes 
the best decision on the time and place scheduling of fogs by default. On the 
contrary, this work serves as an extension to propose such a scheduling model to 
result in a more efficient, automated, and realistic framework.

• The third and final level contains the users. Any newly connected device trying 
to use a service shall be initially routed directly to that cloud. If any existing 
Kubeadm clusters are near that device, the cloud routes that device to the near-
est cluster to obtain the service. On the other hand, if no adjacent clusters are 
available, the cloud serves the user while recording the incoming requests. Users’ 
requests are the source of learning for our R-learning agent, which is taught by 
experience to represent the need for a group of users or locations. The favorable 
decision of creating a fog near users results in better user experience by claim-
ing less networking delays, faster computing via dividing load on volunteering 
fogs, and distributing the computation through micro-services and minimizing 
the load on the cloud for better performance.

After presenting the three main levels of the model, it is time to discuss the rea-
soning and motivation behind our choices. Level one is the brain of the model. It 
contains the agent, services, and the requests database. Having the database on the 
cloud level is mainly because the cloud is the main server for IoT devices that han-
dle their requests. The list of services is also placed on the cloud in order to have a 
centralized repository of services and better control their placements. The agent is 
the component that decides upon services placement by studying the behavior of 
users from the data present in the database. Another motivation for placing the agent 
on the cloud is to monitor its placement decisions in order to update its model and 
keeps learning from all user’s requests. The link between the second layer contain-
ing the fog cluster and the agent is for calculating the reward or loss resulted from 
the decision taken. The model functionality is described in the next section. The sec-
ond layer comprises the Kubeadm clusters, which use the containerization technol-
ogy for services deployment. The primary motivation behind this layer is thoroughly 
discussed in our previous work [6].
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To satisfy this requirement, we propose in this paper the Fog Scheduling Deci-
sion based on the reinforcement R-learning model, which is presented in the next 
section. Our proposed model guarantees a better user experience and wise Fog 
Scheduling Decision through adequately employing volunteering resources at the 
right time and place.

4  Fog Scheduling Decision model

In the previously used on-demand fog formation architecture, we assumed that the 
decision to create fog is taken by default. Considering the threshold-based approach, 
if the number of requests exceeded a predefined threshold, the cloud sends a request 
for creating a fog near that location to serve those incoming requests. However, after 
performing some experiments, the threshold-based approach turned out to have min-
imal effect on decreasing the number of requests reaching the cloud. This was due to 
the dynamic fluctuating behavior of the requests throughout the hours of the day. For 
this reason, we define in this section our fog scheduling problem to be formulated 
and solved using a reinforcement R-learning approach. Our approach is model-free 
and learns by experience.

Since the previously targeted topic (creating fogs on demand anywhere and at any 
time) does not set any boundaries on the number of available fogs to use, we decided 
to zoom in from the expanded definition to specify limits and have a better and more 
realistic scenario. The reason behind setting a number of fogs to be pushed is to 
take into account any costs paid by the cloud to volunteers, reduce the complexity 
of managing lot of fogs, and provide optimal resource management. Therefore, the 
resources usage on the fog devices should be maximized, or in other words, the user 
must be in need for a fog nearby since being able to infinitely push fogs to volun-
teers in all locations is most likely to not occur in real life.

4.1  R‑learning problem definition and challenges

4.1.1  Problem definition

Given the historical behavior of users represented as the number of requests gener-
ated from locations L at the specific time of given days, and a number of fogs M to 
be pushed, the cloud should use these data to make appropriate decisions to either 
push a service or not to every location in L based on the hours of the day. For this 
paper, our model is environment-free and does not study what services particu-
larly to push, but rather either a fog shall be created or not only. The creation of fog 
should result in a maximization of fog resource utilization, therefore service more 
users, which implies higher QoS and satisfaction for users. Deciding what locations 
are really in need of fog presence also increases the cloud performance by minimiz-
ing the load and at the same time better costs utilization from cloud to volunteers, if 
any. The reward function that should be maximized is discussed in Sect. 4.3.1 Eq. 1.
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As previously mentioned, in order to provide a feasible solution to study the ran-
dom behavior of users, represented as locations need in our case, we decided to cre-
ate an R-learning algorithm that learns by the experience each day, wins rewards 
when issuing a good decision, and be punished or looses rewards by any wrong 
decisions. The main challenges of formulating our problem as an R-learning are 
mentioned in the next subsection.

4.1.2  R‑learning background and challenges

In this paper, we are formulating our model as model-free to be solved using 
Q-learning average reward, called R-learning. The reason behind choosing a model-
free agent is that we are not able to predict the dynamics of the environment, or we 
cannot set a probability transition matrix between the states. Therefore, modeling 
the environment will make it complex.

A reinforcement Q-learning problem is defined as the Q-table, which contains 
states and actions (2D matrix), reward and punishment formulas, updating Q-func-
tion, initial state, and an end goal. The model first initializes the Q-values of a 
Q-table either to zero or to random negative numbers (for example, between − 2 and 
0). The exploration phase of the model starts by taking random actions at the begin-
ning. At a given state, the action having the highest Q-value is considered because 
it is expected to maximize the reward and reach the end goal. By taking action for 
a given state, the model should be able to decide on the next state to go to. When 
deciding on the next state to go, the model updates the Q-value of the current state 
based on the action taken. The algorithm then keeps on updating the Q-table until 
reaching the end goal, for example having a Q-value = 0.

The two main challenges in our reinforcement Q-learning problem definition are: 
to first decide on the end goal and second define the states and actions that make up 
the Q-table.

4.1.3  Average reward‑based R‑learning

In a standard Q-learning problem, the learning or updates of the Q-table termi-
nates whenever the algorithm reaches the end goal. An instance of such a case 
is Mountain Car Problem [31]. In this problem, the car starts at position (0, 0) 
with speed equal to zero. The states are defined as the car coordinate in (x, y) 
plane and velocity range. The actions are defined as the direction of movement 
(left, neutral, right). The end goal is to guide the car to reach the top of the moun-
tain, resulting in a Q-value equal to zero. Therefore, this problem uses a “dis-
counted reward,” where an immediate reward is learned after each state transi-
tion. In contrast, our fog decision problem does not have one end goal, but a way 
to maximize the reward by selecting the right volunteers and taking into account 
the random demands of users in locations. Therefore, there is no guaranteed con-
vergence for our model. In other words, our Q-table keeps on changing whenever 
new demands appear from locations. In this situation, we decided that the end 
goal would be to maximize the average reward for the iterations of a given day. 
Therefore, we used reinforcement Q-learning based on Average Reward called 
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R-learning. In R-learning, the average reward that should be maximized is a result 
of rewards earned during the entire transition between states [32]. The first main 
challenge is on deciding upon the use of Average Reward-based R-learning.

4.1.4  Q‑table definition

Each Q-table represents the decisions of one day. A state is represented by a loca-
tion and hour on a specific day. The first M states in our Q-table represent all loca-
tions during the first hour of the day. Therefore, the number of states in our Q-table 
is M × 24 , which are the number of locations times the 24 hours of the day. The 
actions are either to push or not to push. Therefore, the dimensions of our Q-table 
matrix are (M × 24) × 2 . In addition, we are using the transition strategy between 
states to be sequential on all possibilities of hour and location. In other words, the 
algorithm transitions between states sequentially and from one hour to another to 
explore all states’ possibilities. Our Q-table is represented as follows:

4.2  Inputs–data feeding

4.2.1  Data description

It is sufficient to have historical records of the requests initiated by users, includ-
ing their locations and time of each request for a given day. The location can be 
extracted from an IP address. For instance, we consider the first octet of an IP 
address to identify a location. This information can be usually found in any server 
logs. As previously mentioned, this work does not make a decision upon choos-
ing what services should be pushed to specific locations, but rather one decision 
to specify the places with the highest need of fogs. Therefore, the exact service 
name requested by a user is not required for our proposed model to work. A sam-
ple of how a request looks like is shown in Fig. 2.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Push DoNotPush

Loc 1, 0− −

Loc 2, 0− −

Loc 3, 0− −

… … …

Loc 1, 12− −

Loc 2, 12− −

Loc 3, 12− −

… … …

Loc M − 2, 23− −

Loc M − 1, 23− −

Loc M, 23− −

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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4.2.2  Data loading

In order to better represent the data, we extract the information needed to a 3D 
matrix. We call this matrix the learningData. It is formatted as follows:

• learningData[i] represents a dictionary of states of the form (hour, location) 
where requests on the i th day come from.

• learningData[i][j] represents the list of requests sent at state j on day i.
• learningData[i][j][k] represents the time when request k is sent at state j on day i.

An example of the learningData output is shown in Sect. 5.3.

4.2.3  Learning by experience

In reinforcement learning, there are no data for the model to start training on. The 
Q-table is at the beginning either initialized to zero or to random values. Therefore, 
the model starts the exploration phase by taking actions randomly. The model is 
rewarded for good decisions and punished for bad ones. Once the first day finishes, 
the model should have gotten the first insight from the first-day data by updating 
its Q-values. Once the second day comes, the model takes a decision at each state 
either randomly (non-greedy approach) or by selecting the action having the highest 
Q-value (greedy approach). The model then keeps issuing decisions each day and 
learns from the action taken by propagating the reward or loss to the Q-table using 
a Q-function described later. As long as new data are coming, the model keeps on 
improving by updating its Q-table. The model is not expected to converge because it 
should adapt to any unexpected demand from any location.

4.3  Learning phase

Our R-learning agent takes actions based on values present in the Q-table. Our 
updating formula should result in a positive reward once resulted in a good deci-
sion, and a negative one otherwise. Therefore, in this section, we define the reward 
and punishment function calculated after taking a push or do not push action. Once 
the reward is calculated, this value should reflect in the Q-value of the current state 
and be propagated in the Q-table using a Q-function, also defined in this section. 
We then present the full R-learning algorithm based on maximizing the average 
reward. Noting that all algorithms and equations, except Eqs. 2 and 3, are our own 
contribution.
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4.3.1  Reward and punishment

Three components are responsible for building the reward function to represent bet-
ter the goodness of the action taken. These components are: The number of requests 
received from the current location and hour (denoted as NoR), the total number of 
requests received from all locations during the current hour (denoted as TNoR), and 
finally the fog idle time which represents the time for which the fog did not receive 
any request from the covered location at a given hour (denoted as FogIdleTime). In 
the sequel, we show the algorithms (Algorithms 1–4) used for each component cal-
culation, as well as the end reward function and the motivation behind it. The code 
in this paper is written in Python programming language. 

Algorithm 1 getNoR: Get number of requests per state - NoR
Input: hour, location & day
Result: Number of requests

1: procedure NoR Retrieval
2: NoR = Retrieve the number of requests from the learningData matrix using

length(learningData[day][hour,location])
3: Return NoR

Algorithm 2 getTNoR: Get number of requests per hour - TNoR
Input: hour, Locations & day
Result: Total number of requests per hour

1: procedure TNoR Retrieval
2: TNoR = 0
3: for each location ∈ Locations do
4: TNoR ← TNoR+ getNoR(hour, location, learningData)
5: Return TNoR

Algorithm 3 getFogIdleTime: Get fog idle time in minutes per state - FogIdleTime
Input: hour, location & day
Result: Fog idle time

1: procedure FogIdleTime Retrieval
2: RequestTimes = Define an empty set containing minutes of the requests issuing time using Set()
3: RequestsInfo = Retrieve a list of times when each request was issued for a state using learning-

Data[day][(hour,location)]
4: for each requestT ime ∈ RequestsInfo do
5: Add requestTime to RequestTimes using RequestTimes.add(requestTime)

fogIdleTime = 60 - length(RequestTimes)
6: Return fogIdleTime
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Algorithm 4 reward: Reward function calculation
Input: state & action
Result: reward

1: procedure Reward Calculation
2: hour = state[0], location = state[1], day = state[2]
3: NoR = getNoR(hour,location,day)
4: if NoR = 0 then
5: Return -1
6: fogIdleTime = getFogIdleTime(hour,location,day)
7: TNoR = getTNoR(hour,location,day)

8: rewardResult = action ∗ NoR− fogIdleTime
NoR

TNoR
9: Return rewardResult

The reward is calculated using the below equation:

The action is equal to − 1 when the decision taken by our R-learning agent is not to 
push and 1 otherwise. In case the decision is to push, and it turns out to be a good 
decision, the equation will result in a positive reward. A good decision means a high 
NoR during the current state and less fodIdleTime, which means a good distribu-
tion of requests over time. Therefore, the numerator will result in a high value and 
large reward. In case the push decision is not sufficient, the numerator will result in 
a negative value because the NoR will be small, and the fogIdleTime is large. This 
negative reward is considered as a punishment value for our agent which results in 
minimizing the Q-value for the taken action.

In contrast, a decision of not pushing, having action equal to − 1, results in a positive 
reward when the agent does well by not pushing, and a negative reward otherwise.

The fogIdleTime is divided by the NoR in order to minimize the effect of fogIdle-
Time on the rewarding result when the number of requests at the current state is large, 
even if the idle time is not very small. On the other hand, the effect of fogIdleTime is 
large when NoR is small.

The reward is divided by the TNoR to better represent a rate of the NoR for the cur-
rent location and result in a reward between − 1 and 1.

4.3.2  Q‑function or Q‑factor update

After taking action a at state i, Q(i, a) is updated using the below Q-function presented 
in [12]:

(1)
reward = action ×

NoR −
fogIdleTime

NoR

TNoR

(2)
Q(i, a) =(1 − �k) × Q(i, a)

+ �k
[
r(i, a, j) − averageRewardk × t(i, a, j) + �maxQ(j, b)

]
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Algorithm 5 QFactorUpdate: Q-Function calculation
Input: QTable, stateI, stateJ, day, action & averageReward
Result: QFactor

1: procedure QFactor Update
2: QOptionStateJ = Get Q-values of the next state ’j’. Example: QTable[states.index(stateJ)]
3: QValueStateJ = max(QOptionStateJ)
4: qValueUpdate = ((1 − α) ∗ QTable[states.index(stateI)][action]) + α ∗ (reward(stateI, action) −

averageReward+ (n ∗QV alueStateJ)) //Apply q-function and return the new q-value
5: Return qValueUpdate

 In contrast to any Q-function, our model uses R-learning, which implies the use 
of average reward to update the Q-factors or Q-values. Algorithm 5 shows how the 
Q-function function is defined in Python (to be used in Algorithm 6).

In Eq. 2, � is a learning rate discussed later in the paper. k represents the number 
of iteration. r(i, a, j) is the reward resulted from moving to state i to j after taking 
action a. pk represents the average reward on iteration k. t(i, a, j) is the transition 
time from state i to j by taking action a. In our case, t(i, a, j) is the transition time 
between states and is equal to 1 in our case. � is a scaling constant less than 1 but 
close to 1. In our model, we used � = 0.99 . maxQ(j, b) is the maximum Q-value at 
state j.

4.3.3  R‑learning algorithm

Our R-learning algorithm, presented in Algorithm  6, is divided into four steps. 
Below we present a description of each step:

• Step 1 (Input): The first step comprises the initialization of variables and 
Q-table, and updating � and � . ITERMAX represents the maximum number of 
iterations for one day in the learningData matrix, and k is the current iteration 
number. states list contains all states possible in our Q-table. Each state in the 
below algorithm is represented as (hour, location). As previously discussed, the 
first M states are tuples of the first hour, each having a different location. The 
first M states can be represented as (0, locations). The Q-table is initialized to 
zero. � and � are two learning rates variable less than one and are functions of k. 
These variables should converge near zero as k increases or as the model learns 
more. We followed [32] to chose �k and �k to be 

log(k)

k
 and 90

100 + k
 , respectively.

• Step 2 (Q-value update): In this step, we apply the random probabilistic 
approach to decide whether to try exploring, or selecting the action having the 
highest Q-value. The algorithm then updates the Q-value of the current state 
based on the action taken and Q-function calculation.

  Following the approach of [32], we define a probability, function of k, called 
pk, to be 

G1

(G2 + k)
 where G1 and G2 are two constants such as G1 < G2 . In our 

algorithm, we chose G1 = 10 and G2 = 20 . This motivation behind calculating 
this probability is to leave room for exploration in the algorithm. In our R-learn-
ing algorithm, we get a random value between zero and 1. We get pk as a result 
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of the probability function for a given k. In case randomValue ≤ (1 − pk) , our 
agent chooses the action based on a greedy approach, or in other words taking 
action having the highest Q-value. Otherwise, the agent tries to explore other 
possibilities by taking action having the smaller Q-value, or following the non-
greedy approach. This is important for our algorithm to keep learning new pat-
terns and explore new decisions as to the demand change in some locations. As 
the value of k increases, the probability value decreases, and therefore, the model 
tends to explore less.

  Based on the taken action, − 1 for not push and 1 for push, the agent then 
extracts the highest Q-value of the next state j. After that, the new Q-value for 
the current state is computed by calling the Q-function of Eq. 2.

• Step 3 (Updating Average Reward): After updating the Q-Value and get-
ting the reward, the average reward should be updated. If the chosen action 
was non-greedy (following the exploration), the agent goes to Step 4. 
Otherwise, the total, time, and average rewards are updated as follows: 
totalReward = totalReward + r(i, a, j) and timeReward = timeReward + 1 . The 
averageReward is then updated using Equation 3, which was presented by [12]. 

• Step 4 (Check for Termination): The agent increments k by 1 and returns to step 
1 whenever k < ITERMAX. Once k reaches ITERMAX, the agent starts learn-
ing on the next available day on the learningData matrix to repeat the process 
again with k = 0. When the agent finishes learning on all days, it checks for addi-
tional epochs to improve its learning. In case there are no more epochs to pro-
cess, the agent finally goes to step 5. Our model keeps on getting new data every 
day, so it learns from its previous action to improve the model further. Therefore, 
on every new day, the agent reenters a new cycle of learning by repeating all the 
steps.

• Step 5 (Generate a Policy): Once the model finishes its learning cycle on all data 
present in learningData matrix, it builds its policy to make decisions on a coming 
day. The policy is built by selecting the action (push or not push) for every state 
based on its maximum Q-value. Because the number of fogs that the cloud can 
push might be limited, for instance, M fogs, the agent selects M push decision 
having the highest Q-values in order.

(3)averageRewardk+1 = (1 − �k) × averageRewardk + �k ×
totalReward

timeReward
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Algorithm 6 R-Learning
Input: Requests

1: procedure Learning
2: ITERMAX = 200, epochs = 10, α = 0, β = 0, η = 0.99, States, QTable, learningData
3: for each epoch ∈ Range(epochs) do
4: for each dayState ∈ Range(length(learningData)) do
5: k=1, totalReward=0, totalTime=0, averageReward=0
6: while k < ITERMAX do
7: update α and β
8: for each state ∈ States do
9: Apply random probabilistic approach to decide if greedy approach is followed or not

10: Update QValue of current state based on action taken using theQFactorUpdate function
11: if Greedy approach is followed Then:
12: totalReward = totalReward + reward of current state and action
13: totalTime = totalTime + 1
14: Update average reward using equation 3

Increment k
15: Generate the policy based on Q-table

5  Experiments

In this section, we first discuss the objectives of conducting our experiments. We 
then define the threshold- and random-based approaches to be compared with the 
decisions of our proposed model. After that, we discuss the dataset used to per-
form our evaluations. Finally, the experimental setup is explained, followed by 
the two evaluations performed to prove our model efficiency and significance.

5.1  Objectives

There are two main objectives for these experiments, as listed below:

• The first is to prove the above claimed functionality of the ability of the 
model to learn by experience. This is shown by the improvement in the model 
achieved over time.

• The second objective is to show the significance of our model and the good 
placement decisions based on time and location. This can be proved by out-
performing other techniques existing in the literature, such as the threshold- 
and random-based decision-making for fog placement. In the next section, we 
describe the way used to implement each of the threshold- and random-based 
approaches.

5.2  Implementation of existing work approaches

5.2.1  Threshold‑based approach

In this approach, a predefined threshold is used. This threshold approach is based 
on the literature work of [27] who considered the time as a threshold; however, in 
this experiment, we consider the number of requests as a threshold. If the number 
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of requests received from a specific location at a specific hour exceeds that thresh-
old, one of the M fogs would be used to serve that location. It is important to 
note that this approach focuses on exploiting the locations generating the big-
gest amount of requests. However, this might not always lead to the best needed 
solution since the agent might push to locations prior to the knowledge that other 
locations might generate more requests. In contrast, in case the threshold is high, 
the agent waits until the threshold is reached by certain locations. This can lead 
to missing to serve other locations, which can also be in need. On the other hand, 
our model is capable of learning a pattern from the user behavior by counting on 
the reward and loss calculations reflected in the Q-table of the given state. Our 
approach advantage is shown in the study of Sect. 5.6.

5.2.2  Random‑based approach

This approach, as the name states, follows a random flow of fog location distribution. 
This random approach is based on the work done by [33]. Here, after checking all the 
locations that established a connection with the cloud, a randomly selected location 
at a random hour of the day is chosen to have a serving fog. This approach, unlike 
the threshold based, focuses on only exploring the environment by randomly selecting 
locations. The cloud can pay a lot with this approach without actually benefiting from 
the rented resources. Because of the possibility of pushing fogs anywhere without prior 
knowledge of the location needs, the agent might push a fog to a location with low 
needs, which contradicts our model objectives.

5.3  Dataset

These data were collected from a NASA server log located in Florida [14]. The data 
contained 13 days worth of logs from the dates between July 1 and July 13, 1995. Each 
row in the data indicates one user request. A sample of the data is shown in Fig. 2. Each 
column in these data is described as follows:

• Host: represented as an IP address
• Timestamp: Exact time when the request was received by the server. The timestamp 

format is DD/MON/YYYY:HH:MM:SS using a 24-hour clock. The time zone is 
-0400.

• Request made by the user given in quotes
• HTTP Reply code
• Bytes in the reply

For our model, the host IP address and the timestamp are only needed to make the fog 
placement decisions. As mentioned earlier, the first octet of the IP is used to distinguish 
between locations. Based on these data, there are 70 different locations. In our experi-
ments, the preprocessing described in Sect. 4.2.2 is performed to extract the learning-
Data matrix. For the given data, learningData[0][(12, ’148’)] contains:
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This list contains the time in seconds of each request received by the cloud in day 0 
at hour 12 and from location ’146’.

5.4  Experiments setup

In the dataset, there are 70 different locations, and we chose the number of fogs that 
the cloud can push to be 20. This number can better show how the model can still 
minimize the load on the cloud by pushing the right fogs with such limited availabil-
ity. The experiment setup of each objective is shown below.

• Objective 1 For the purpose of showing the model effectiveness and ability to 
learn over time, we conduct the first experiment as follows. The model only 
reads the first-day data learns on. We then selected three days randomly from 
the dataset to test the model on. These days are days 2, 10, and 11. The place-
ment decisions are made from the output of the Q-table learned on the first day 
only. After that, we let the agent training for all the remaining days of the dataset 
except days 2, 10 and 11. The purpose is to check the new decisions made by the 
agent following the new version of the Q-table after more learning. The results 
are shown and discussed in Sect. 5.5.

• Objective 2 The next aim is to prove how our R-learning model outperforms 
other existing ones. This is done by implementing the threshold- and random-
based approaches and comparing their decision with our model after training on 
several days. The day chosen for testing is day 10. The same Q-table generated 
from the first experiment after training on several days is used in this experiment. 
We set two different threshold values for the number of requests and conducted 
two different scenarios for each with different random-based pushing also. The 
threshold values are 30 and 80 requests per hour.

5.5  Evaluation objective 1—learning improvement over time

In the top three graphs of Fig. 3, each graph is represented by the hour of the day on 
the x-axis with respect to the number of requests received by the cloud. The green 
dashed line represents the number of requests sent to the cloud initially by all loca-
tions on this day. The dataset clearly shows that the peak hours or the high number 
of requests generated by different locations are between hours 9 and 18. Therefore, 
the importance of our model decision lies in this range. The red line shows the num-
ber of requests received by the cloud after the agent pushes 20 patches of fogs to 
locations based on our model’s decision.

The top three graphs of Fig. 3 show the results of the decision made by our agent 
after only one day of training. Because our model starts learning randomly and 
because the first day was not enough to let the model learn a better pattern, you can 

[43270, 43300, 43339, 43369, 44692, 44722, 44756, 44785, 44813,

44843, 44898, 44931, 44961]
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see that the improvement achieved is minimal compared to the three below graphs. 
We let the agent learn for the rest of the day except for days 2, 10, and 11. After 
learning, the agent showed more mature decisions of placing the 20 patches of fogs 
in better locations at a better time. This is reflected in the results of the second row 
of graphs shown in Fig. 3, where a load of requests sent to the cloud improved for 
more than 60% compared to learning on one day. It is also important to mention 
that less number of requests received by the cloud means the fogs are serving more 
requests, and therefore, the agent is doing well. Comparing the cloud load before 
and after the agent placement decision, we can observe that the cloud load dimin-
ished by more than 30%.

5.6  Evaluation objective 2—comparison to threshold‑ and random‑based 
approaches

The results are shown in the graphs of Fig.  4. By comparing the threshold-based 
approach of values 30 and 100 requests per hour from a specific location, we can 

Fig. 3  Number of requests received by the cloud before and after creating fogs based on our Fog Sched-
uling Decision model showing the learning improvement over several days taking different testing sam-
ples

Fig. 4  Comparing R-learning decision of day 2 with the decision of threshold [27] and of random-based 
[33] approaches
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notice that our model performs better in case of the high volume of requests, for 
instance, during the peak hours between hours 9 to 18. This is because of the main 
drawback of the threshold approach, which counts on hitting its threshold by the first 
location it encounters to make a decision of pushing directly. In the case of threshold 
30 on Day 2, the agent searches for the first 20 locations it finds, which generates a 
number of requests greater than the threshold. In the case of threshold equal to 100, 
the performance is worse because the number of locations generating more than 100 
requests per hour is most likely to be less than 20 (as per the data studied). On the 
other hand, in some cases, the threshold decision might do well in case the number 
of fogs available to push matches the number of locations generating requests more 
than the threshold. This is the case at hour 18 in the first graph, where we can see 
that the threshold model did well and similar to what our model predicts.

For the random-based approach, the agent has to select 20 random locations out 
of the 70 to push fogs to. Sometimes the agent can be lucky. An example can be 
hour 7 in the first graph. However, most of the time, the random approach is not 
guaranteed to produce helpful decisions. An example can be in the first graph of 
our experiment, where at hour 14, no fog was able to process any request coming 
to the cloud because they are misplaced by the random decision taken by the agent. 
The number of requests at this hour remained around 1750 requests, which is equal 
to the total number of requests received by the cloud originally. At the same hour, 
our model was able to minimize the number of requests to the cloud to around 400 
requests. This clearly shows the advantage of our model compared to the random-
based decision. In other hours of the day including the second graph of Fig. 4, we 
can see how the random-based model is poorly performing compared to our model.

In conclusion, even though the threshold- and random-based approaches can min-
imize the cloud load by approximately 70% and 90%, respectively (based on our 
scenarios), our model is still capable of minimizing more than 30% of this load com-
pared to these approaches.

6  Conclusion

Creating fogs on demand to serve users and devices is a new concept that allows the 
creation of Kubeadm clusters containing volunteering fog nodes that provide pro-
cessing and storage capabilities, which can help by spreading services provided by 
the cloud. This new concept is proved to increase the performance of the network by 
decreasing congestion, can assist in boosting the quality of service provided to the 
users by migrating the services to points closer to the edge, and can aid the cloud by 
decreasing the load pressure of incoming requests. In some cases, the cloud might 
have the privilege to push services on a limited number of fog devices for the pur-
pose of minimizing the complexity of monitoring a large number of fogs and cost 
for volunteers that do not offer their resources for free. This motivated us to cre-
ate a new reinforcement learning model that is responsible for scheduling the avail-
able clusters in locations in a way that better utilizes fogs resources. The suggested 
R-learning model can better predict, after giving it some time to learn the behav-
ior of the requests, the distributions of clusters over locations at the proper time. 
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This model is located in the cloud, where it periodically checks the behavior of the 
incoming requests and updates its information using R-learning techniques. Several 
experiments were conducted comparing the performance of our suggested model 
with respect to other standard known methodologies, such as the threshold-based 
and random-based models for cluster distribution. As shown in the experiments, 
the proposed model was able to illustrate the ability to improve over time, outper-
form the other two methods, and achieve promising results for the time and localiza-
tion problem. In this context, the number of processed requests performed by the 
cloud decreases from 100% to more than 30% using our model while this number 
decreases to only around 70% and 90% when using random-based and threshold-
based approaches.

As a future direction, we are working on an extension for this work that improves 
the decision model to specify what services to include in the placement decision and 
what to keep on the cloud.
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